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ANNOTATION

The monograph is devoted to the present-day state of a new
branch of aerodynamics, which is acquiring great practical
Importance in connection with the development of aerospace
technology. A systematlc analysis 1s given of the physico-chemical
processes 1n high-temperature gas flows and their effect on gas
dynamic parameters.

Information is given on the chemico-physical, thermodynamic,
and kinematic properties of gases (primarily air). The fundamental
equations are formulated, and the general properties of non-
equilibrium flows are described.

One-dimensional flows, the structure of a shock wave 1n a gas
mixture, and the properties of nonequilibrium flows in a stream
filament are dlscussed. A description is given of the method of
calculation and the similitude conditions for flows in nozzles.
The basic determining parameters and correlation relations are
introduced.

An analysis is given of the problems of external gas dynamics
of nonviscous nonequllibrium flows, of the flow around blunt and
sharp bodies, corresponding to the similitude laws. Within the
framework of the boundary layer theory, a discussion is given of
viscous nonequllibrium flows, including the effect of_chemica14
reactions on the surface, the flow in the neighborhood of a
critical point of a blunt body (including the effect of low gas
density), the flow around a flat plate and a cone, as well as the
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characteristic features of nonequilibrium wake flows.

The effect of radiation from a gas flowing around blunt
bodies, the effect of nonequilibrium physico-chemlcal processes
in gases on aerodynamic and thermal characteristics of hypersonic
aircraft, and on the state of the flow in nozzles of gas dynamic
plants, etc., are described. The radiation thermal flows are

determined.

The book 1s designed for aeromechanical engineers acquainted

with the fundamentals of hypersonic gas dynamlcs, and it may also
be useful to upper-division and graduate students in those flelds.

178 illustrations, 16 tables, 573 bibliographical entries.
Reviewer; Doctor of Physico-Mathematical Sciences, I. P.

Glnzburg
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PREFACE

If in the first half of the 20th century, the gas dynamics
of an 1deal gas anticipated the demands of aircraft technology,
beginning with the second half of the century, the development
of missile and space technology has taken gas dynamics into the
1little known area of high temperatures and low densities. Under
these circumstances, it was impossible to consider the gas ideal,
with constant heat capacities.

Moreover, it became necessary to consider the finite rate of

the physico-chemical processes in a gas (excltation of vibrations,

dissociation, ionization, radiation), i.e., the nonequilibrium of
the flow. Thus, nonequilibrium flows ceased to be something that
only physicists would deal with. Today these questlons are of
great interest to a wide range of engineers working in the area
of applied aerodynamlcs.

At hypersonic speeds of flight, corresponding to M = 10 and
above, the real properties of a gas, in particular the nonequili-
brium processes, have an effect: on the characteristics of the
flow field around aircraft. The real properties of a gas and
nonequilibrium of the flow result in a substantial change in
the amount of thermal flow to the walls of rocket nozzles and
to the external surface of aircraft. They may have a great
influence on the thrust of ram Jet engines and even affect the
aerodynamic characteristics of the aircraft. In particular,
the nonequilibrium of a flow may influence the moment and center

¥*Numbers in the margin indicate pagination in foreign text.
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of pressure, which in the final analysis should result, for
example, in a substantial variation of the touchdown location

of a descending vehicle.

There has been particular interest, shown recently in the
study of nonequilibrium wake flows, in the problem of detecting
objects entering the atmosphere at a hypersonic speéd, and
communication with them. It may be noted that it 1s very diffi-
cult and often practically impossible to simulate the real
properfies of the ailr and nonequilibrium processes in existing
hypersonic experimental units. All this illustrates directly
how important and necessary it is to study nonequilibrium flows

theoretically.

In the monographs devoted to the aerodynamics of hypersonilc
flows, we do not find a description of the physico-chemiéal pro-
cesses In a real gas, or their effect on the aerodynamic and
thermal characteristics of flows, that would be sufficient for
practical use. On the other hand, in the literature on the
kinetics of physico-chemical processes we do not find any
articles in which those questions are considered in terms of

their application to aerodynamics.

The present book aims to fill this gap. It generalizes
the rich factual material that has appeared in recent years in
domestic and foreign literature. The basic goal of the book
is to give the reader a general understanding of the problem of
flows of nonequilibrium and radiating gas, to acquaint him
with the basle features of such flows and the difficultiles
accompanying their investigation, as well as to equip him with a
sufficient amount of factual data to enable him to obtain the
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correct concept of the numerical effect of nonequilibrium
processes¥,

The book does not pretend to be an exhaustive exposition of
all problems involved in the physics and aerodynamics of non-
equilibrium flows. It does not discuss, for example, the
questions related to plasma flows in the absence of thermodynamic
equilibrium, nonequilibrium processes of turbulent transfer,
processes of combustion in filaments, etec.. Each of these
questions is a separate problem going beyond the scope of the
present book and far from an exhaustive solution.

Chapters 1, 2 and Sections 1-5; 3.1 of Chapter 3 were wrltten
by A. A. Gladkov; Sections 6 and 7 of 3.1, 3.2 of Chapter 3,
Chapter 4, by 0. Yu. Polyanskiy; Chapter 5, by V. P. Agafonov;
Chapter 6, by V. K. Vertushkin. The authors wish to thank to
V. N. Zhigulev, V. V. Sychev, V. Ya. Neyland, and V. S. Galkin
for useful discussions and valuable comments regarding individual
questions. The authors are also grateful to I. P. Ginzburg who
took it upon himself to review the book. The authors are
particularly grateful to Academician A. A. borodnitsyn who spon-
sored the ldea of wrliting such a book.

* The book was written mainly during 1967-1968, which deter-
mined the literature used. When preparing the manuscript for

print, we have considered the most important papers that have been
published after 1968.
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(]
Zi statistical sum
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P
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B degree of ionization
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Y recombination efficiency on surface
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CHAPTER 1
PHYSICO-CHEMICAL PROCESSES IN GASES

The molecular structure of gases 1s not ordinarily considered[lg
in gas dynamics. The gas is analyzed, not as a collection of
partiéles, but as a continuous medlum. The quantities that are
related to molecular properties such as heat capacity, transfer
coefflcients, and the like enter the equatlions of gas dynamics as
certaln coefficlents that can be determined by using the theory
of molecular structure or not.

If we do not consider rarefied gases (or, which is the same
thing, regions with dimensions comparable to the free path of the
molecules), then one can disregard the motion of the molecules
and remaln within the limits of the traditional analysils accepted
in gas dynamics, where gases are considered as continuous media.
However, even in such an approach, in those cases when internal
changes may take place 1n a gas, one has to:take the exlstence
of the particles of the gas into account and consider their inter-
nal structure and interactions. In particular, such are the con-
ditions in a gas heated to high temperatures. Below we shall dis-
cuss the problems closely related to chemical kinetilcs, and we
shall not deal with the preblems of physical kinetics. Therefore,
we should start the discusslon with a brief survey of thermo-
dynamlcs, molecular structure, and chemical kinetics of gases.

1.1 Equillibrium and nonequllibrium states

A collection of isolated material objects is called a system.
It 1s assumed that heat transfer and diffusion of components may
take place between parts of the system. The state of the system
wlll be given by specifyling independent macroscopic parameters
that characterize 1it.



If all parameters of a system are constant in time and there
are no steady flows of mass, momentum, and energy, due
to external causes, the state is a state of (thermodynamic)
equilibrium. /11

A thermodynamic system is defined as a system in the state of
thermodynamic equilibrium. In thermodynamies, it is postulated
that an isolated system which is under definite and constant ex-
ternal conditions will sooner or later reach a state of thermo-
dynamic equilibrium and cannot leave ft''spontaneously."’ The 'éxfér->47
nal conditions include the volume occupied by the system, external
force fields acting on it, and the temperature of the surrounding

bodies.

The process involving the transition of a system to a state
of equilibrium is called relaxation, and all states that differ
from the state of equilibrium are called the nonequilibrium
states. The process which goes through a series of nonequilibrium
states is called a nonequlilibrium process.

A transition to a state of equilibrium in the absence of
external fields is characterized by the establishment of a homo-
geneous state in the entire system, establishment of constant
composition. If chemical reactions or other internal processes
are possible in a system, then the transition will include the
cessation of all macroscoplic processes and exchange of energy,
momentum, particles between various parts of the system. Briefly,
this can be expressed by saying that in a state of thermodynamic
equilibrium all, internal, parameters of a system are functions of
.the external parameters and the temperature of the system. The
constancy of the macroscopic parameters in the state of equili- -....:
brium does not exclude microprocesses in the system, but each of
the microprocesses 1s balanced by a reverse process so that
dynamic equilibrium 1s preserved.



The concept of temperature as a quantity uniquely related
to the energy of a system may, strictly speakling, be introduced
only for equillibrium systems. If a system 1s not thermally
Insulated, then the temperature in the state of equilibrium is
equal to the temperature of the surrounding medium, and the
energy of the system 1s determined by specifying the temperature
of the surrounding bodles. If the system 1is thermally insulated,
then there is no exchange of energy with the surrounding medium,
the_energy -of the -system remainsg constant, and the temperature 1is.. ...
determined by a given energy of the system.

Often 1t 1s useful to use the concept of quasi-equilibrium
systems, 1.e., systems in which an exchange with the surrounding
medium occurs much more slowly than the internal processes in
the system. The state of quasi-equilibrium systems corresponds
wlith great accuracy to a state of equilibrium. However, the
temperature of a quasi-equllibriumsystem in general is not equal
to the temperature of the surrounding medium, and is determined by
the energy of the system.

Due to the exchange of energy with the surrounding medium, the
state of equilibrium of a system changes. However, since the
internal relaxatlion processes occur at a high rate, the system
always remains in a state close to a state of equilibrium. Such
a concept 1s very convenient, since it permits us to use a
strictly defined state of equilibrium of a system in the calcula-
tion of exchange processes that shift the equilibrium.

In the cases of nonequilibrium states, the .external para- /12
meters and the energy of a system do not uniquely determine the
state of a system, and we need much more detailed information to
describe the system. Thus if chemical reactions may occur in a
gas volume element, then different compositions of the gas will
correspond to the same external conditions. However, in a state
of equilibrium the composition of a gas is completely determined
by the external conditions and the temperature of the gas, since

in the general case they determine an equilibrium state of the
system. '



The introduction of quasi-equilibrium systems is physlcally
Justified, even in a discussion of relaxation in gases. In the
gengral case, the gas molecules have a number of degrees of
freedom: translational, rotational, vibrational, to which one
formally adds chemical processes: lonization, electron excitatlon.
The relaxation processes corresponding to different degrees of
freedom in general occur at different rates.

The translational and rotational degrees of freedom are
called active, since the equilibrium with respect to these ‘degrees:-
is established faster than with respect to the other ones. The
remaining degrees of freedom are called inertial or internal. De-
composition into quasi-equilibriumsubsystems depends on the condil-
tions. The role ofquasi-~equilibrium systems may be played by a
- part of the entire set of degrees of freedom of a gas or the
individual degrees of freedom. Such a combination of individual
degrees of freedom into quasi-equilibriumblocks in many cases
leads to a substantial simplification of problems.

We shall primarily be interested in processes involving the
establishment of local equilibrium of a separated mass of gas in
time. The establishment of equilibrium, associated with the
transfer processes will, as usual in the theory of continuous
media, be accounted for by the introduction of suitable coeffl-
cients in the discussion of the boundary layer in Chapter 5.

1.2 States of equilibrium

Let us proceed to a more detailed discussion of the internal
degrees of freedom of a gas, ana let us obtain an expression for
the heat capaclty of a gas at high temperatures. The heat
capaclity of a gas at constant volume is defined as the derivative
of the internal energy of a system with respect to the temperature.

The internal energy of a gas is composed of energies
corresponding to different degrees of freedom: translatlonal
motion, rotation, vibrations of molecules, and electron excitation:

4
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(1.1)

A1l degrees of freedom with the exception of the translational
motion are quantized. This means that the energies of the inter-
nal degrees of freedom of the particles making up a system may
occupy only certain discrete levels e;(j=0,1,2.) . The energy /13
of a particle may change only by a value equal to the difference
between the levels, and an increase in the energy of the system
corresponds to an increase in' the number of particles at higher
energy levels. The difference in energy between two energy
levels is called a quantum of energy. If the energy of a system
1s large as compared with the quantum of energy, then the distri-
bution of energy among the levels may be considered to be contin-

uous and the quantum effects may be neglected.

The probable number of particles, nJ, with energy e 1in a
state of equilibrium at temperature T is given by the Boltzmann
distribution where £=138-10-2 J/K is the Boltzmann constant;

’1}=”o'ﬂ' exp[—(ej —£o)kT}),
&0 (1.2)

gJ 1s the number of different states of the same energy (the

degeneracy number or the statistical weight of the state); ng is
the number of particles in the ground state (j = 0).

The sum over all states

Z=;g,exp(—e,/kr)‘ (1.3)

is called the statistical sum and plays an important role in
statistical thermodynamics, since various thermodynamic functions,
characterizing a system, can be expressed in terms of it. Evi-
dently, the total number of particles in the system will be



”=},] = XD (l#T) ,;‘_] grexp(—#T) =" exp(ediT).

(1.4)

The energy of particles 1n a state J is .&m;y , and the total
energy of the system is

E =z 91'11=ZL;0 E &sejexp(—¢)[/kT)=
l L Lo

U e et aamand

Zy *

dar dar (1.5)

The heat capacity of the system at constant volume is

_dE_pr d (r2dlZY
Cy - T (T T ) 1.6

The entropy is given by

s_S°=R[%(Tan)—an°].

According to the third law of thermodynamics (Nernst's
theorem), the entropy vanishes at absolute zero. This makes it
possible to determine the absolute entropy.

For continuous distributions, the summation is replaced by
integration, and the statistical sum becomes the statistical
Integral.

To calculate the energy of quantized degrees of freedom we
must know the corresponding energy levels. Therefore it is
necessary to know the internal structure of the molecules.

N



The atoms in a molecule may be located along a straight
line, in which case the molecule is called linear, or they may
be located arbitrarily, in a plane or in space. Linear molecules
differ from other multiatomic molecules in that they only have
two rotational degrees of freedom corresponding to a rotation
relative to two mutually perpendicular directions, perpendicular
to the line on which the atoms are located. If a molecule con-
sists of N atoms which may be considered as material points,
then the total number of the degrees of freedom 1s 3N. Among
them, three are due to the translational motion of the molecule as
a whole and two degrees of freedom in linear molecules and three
in nonlinear molecules, due to rotational motion. Thus, linear
molecules have 3N-5 vibrational degrees of freedom, and the
nonlinear ones 3N-6.
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Figure 1.1 Potential of the
interatomic interactiolr of a -
diatomic molecule (the dashed
line - a parabola - represents
the potential energy of a har-
monic osclllator; the energy

of the oscillator is counted
from the minimum of the potential
energy)



Vibration§

Forces acting between atoms and molecules attract atoms
at large distances, and at small distances the forces of attraction
change into sharply increasing forces of repulsion. The intera-
tomic forces F are directly related to the potential energy of

the interaction between atoms e: F==-“%%

Therefore the function e(r) also determines the forces of
interaction (Fig.l.1). There is a certain distance ro at which
the forces of interaction between atoms vanish, and the corres-
ponding position of the atoms is a position of equilibrium. /15

The values of ry for two-, three-atomic gases usually lie
between 1 and 2 . The forces of interaction are difficult to
calculate even for the simple case of a two-atomic molecule,
Therefore one uses various empirical expressions that approximate
the Interaction potential. Since the oscillations of the atoms
in a molecule occur about the position of equilibrium, the inter-
action potential is approximated primarily in that region.

One of the simpler types of approximation is the parabolic
approximation of the potential (see Fig. 1.1). It gives good
results for many problems in which one considers the neighborhood
closest to the position of equilibrium. In addition, the para-
bolic approximation of potentials is convenient in many estimates
since the solutlion of the problems of quantum mechanics for vi-
brations of atoms 1s particularly simple. When using the para-
bolic potential we deal with a harmonic oscillator. The energy
levels of a harmonic oscillator are distributed uniformly and

are given by

e, =hv ('v—l——;-); 9=0, 1, 2....
(1.7)



L =

Here v— 1s the fundamental frequency of the osclllator character-
istic for molecules of a given substance (Table 1); h=6,62-10"%
J « ¢ is Planck's constant; v is the vibrational quantum number.

TABLE T
CHARACTERISTIC VIBRATIONAL TEMEERATURE [1]
CO, | N0

Gas | Hp Io (s} l N; | CcO I Cl,

kv

T'=T |5958 305 | 2228 | 3336 | 3080

797 959 l 847

Remark The values of T for CO, amd N,O given in the table
correspond to the frequency of gwo bending vibrations of a molecule.
In additlon to these values 1t 1s also possible to have the

values of 1920 and 3380 for CO2, 1850 and 3200 for N20.

It will be noted that the minimum of energy of vibrations

n
1s not zero. It has a certaln definite wvalue: Ef=?f (see

Fig. 1.1). The mean vibrational energy of a harmonic oscillator
1s determined by summing over all levels:

E_ o
n

A=0 (1.8) /16

and the population of a level is gilven by the Boltzmann distribu-
tion

n,=nyexp(—ohv[kT). (1.9)

Substltuting the expression for n, in Eq. (1.8) and assuming
that the energy of the ground state 1s zero, we get

E'vhvexp(—'vhv/kT)— T—. (1.10)

v=0 exp ? -1



This is Planck's formula which is used also in theory of radiation.
The statistical sum for the harmonic oscillator is

7 _ _ . — ._exp (— hv/24T)
vib exp[— kv (v1,)/AT] 1—exp (— hv/kT) *

0 (1.11)

The simplicity of the model of the harmonic oseillator 1s
also the reason for its shortcomings. As shown by theory, in the .
model of the harmonic oscillator the transitions are possible only
between neighboring levels (single quantum transitions). In
real molecules multiquantum transitions are also possible although

less 1likely.

In addition, the levels of the harmonic oscillator
continue up to infinite energy. If the energy of the osclllator
is low, this does not have a great importance since the popula-
tion of the higher levels decreases very rapidly and has hardly
any effect on the statistical sum. However, 1in a real molecule
there exlists an upper level for the energy of the interatomic
bond (Fig. 1.2), corresponding to the dissociation of the
molecule (the dissociation energy D).

e@* In order to take account

of the finiteness of the upper
energy level, one sometimes
uses a model involving a har-
monic oscillator with a cutoff,
which assumes that the summation

RO A NN - PIVE
%__i . in Eq. (1.10) goes up to a cer-
¢ tain finite ¥. 1In this case,
Flgure 1.2 Morse potential the energy of the oscilllator

(horizontal lines corres-
pond to the energy levels

of an anharmonic oscilla-
tor, the dashed line to the
energy of the harmonic oscil-
lator)
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is glven by

hv vhy

Ewm -
exp (hv/AT) — 1 exp (VAVjAT) — 1 (1.12)

For ¥ , we substitute the level number corresponding to the
dissoclation energy or the one closest to 1t. Usually, the
number 1s on the order of a few tens.

The followlng Morse potential is closer to realilty (see
Fig. 1.2):

e(r)=D[1 —e—str—ra]2, ( 1-. 13)

The solution of the quantum-mechanical problem is also possible
for this potential. The energy of the levels is given by

to=(vt5 m)—22 (o+5)- (1.14)

The energy levels are not spaced equally. They become
closer as the level numbers increase.

However, in the model with the Morse potential we can no
longer speak of harmonic vibrations, since for levels with a large
number the anharmonicity of vibrations 1s important, and only for
the lower levels are corrections for anharmonicity small. Multi-
quantum transitions are possible in this model. The Morse poten-
tlal reproduces well the qualitative features of the actual po-
tential. However, it 1s not easy to determine the constants that
best approximate the real varlation of the potential 'for specific
substances. The number of levels for the Morse potential can be
estimated by neglecting 1/2 as compared with v in Eq. (1.14).
Then

~2D
Omax (1.15)

11
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For nlitrogen, the number of levels is approximately equal to
70; for oxygen—50; and hydrogen—close to 13.

The calculation of even the harmonic vibratlions of multia-
tomic molecules presents much greater problems [2] than for two-
atomic ones. Usually, in the calculation for multiatomic mole-
cules one determines the normal vibrations* and to each one of them
there corresponds aharmonic oscillator with its fundamental frequency
(see Table 1). Thus the problem reduced to aset of simpler problems.

Rotation

Considering the simplest case of the rotation of two-atomic
molecules, we can represent them in the form of rigid dumbbells.
Theory gives the followlng expression for the guantum levels of
such a rigid rotator: /18

h?
832J‘j(j+l)' (1.16)

ej=

where J=purg® ; o i1s the distance between atoms A and B, and
is the reduced mass of a molecule, as given by the expression

Mamg

b At my (1.17)
where m is the atomic mass.
The welght of the state J is 2] + 1. The energy quantum in
2
the ground state is As=—— . We can assoclate the character-
istic temperature 7)==%; with this value.

Using the éharacteristic values of the reduced mass and the
interatomic distance, we get T,=2-3K , for 02, N2 and T,=85K

¥ TIn the general case, the vibrational motion of each of n
degrees of freedom of a linear conservative system is anharmonic,
since it represents a superposition of n vibrations with different
frequencles. From them, one can obtain n linearly-independent
combinations of vibrations, each of which corresponds to the
vibration of a system at a definite frequency, i.e., to a har-
monic vibration. These harmonic vibrations are called normal.

12



for H2. Consequently, already at temperatures on the order of
several hundred degrees (%;::moq , we can neglect the guantum
character of rotation. This estimate is valid for molecules

of a majority of substances conslidered in aerodynamics.

Only for hydrogen (small moment of J) at temperatures on the
order of 100 °K and below 1s it necessary to consider quantum

effects of the rotational degrees of freedom.

The statistical sum of a linear rigid rotator is given by,

8n2J,
Zp =10 (T,<T): (1.18)

Here >0 1s a symmetry factor equal to unity for two-atomic
molecules, consisting of different atoms (for example, NO), n = 2
for two-atomic molecules consisting of ldentical atoms,

In the general case of a multiatomic molecule, the expression
for the statistical sum retains the form (1.18); the symmetry
factor is defined as the number of interchanges of identical
atoms in a molecule increased by 1, which 1s equivalent to the
rotation of a molecule as a whole.

For nonlinear molecules

- 8n2 [ 2xJRT \%s
Z =" =
= (o )"

(1.19)

where J represents the geometric mean of the three principal
moments of inertia of a nonlinear molecule: J=(JJJs)"s . The
rigid rotator model is strictly speaking invalia when considering
the rotational degrees of freedom, since there is always inter-
action between the rotational motion and vibrational motion,
particularly at a higher amplitude of the vibrations of molecules.

~N
'_l
\O

However, this effect i1s usually neglected in simple calculations
if the frequencies of rotation and vibrations have values of
different orders of magnitude. In exact calculations, one also
considers the effect of the anharmonicity and the interaction

13



between rotatlion and vibrations.

Translational motion

The distribution of molecules over velocities v in trans-
lational motion obeys the Maxwell distribution law

dn(v)=N l/ 2m 3% 20
sl ’ (1.20)

where m 1s the mass of a molecule; N 1S'fhe fotal numbef'of the

molecules.

The corresponding statistical sum is

1 8/

where V 1s the volume occupied by the gas.

The number of collisions per unit time of a molecule of

gas A with molecules B is

7 =20, (22 )'

where d=m%{d5+d3) is the sum of the radil of the molecules A
and B; ns is the number of molecules of gas B per unit volume.

Excitation of electrons

The quantum levels of electrons in molecules and atoms for a
majority of substances differ even more than the vibrational levels
of the molecules, and even at temperatures on the order of
10,000°K are greater than kT for many gases. For example, &1—g0=6,1
eV for N2; g —g=237 eV for N; eai—e&= 196 eV for 0;' €1—¢go=0,98
eV for 02; ea—e=1,62 eV fgr 02; € —g=529 eV for NO. Therefore,
at temperatures up to 10 '°K, the molecules are mainly in the
ground electronic state and the statistical sum to a first approxi-

mation consists only of one term, goe *T. . The statistical
14



weights of the ground states will have the following values:

gp= 1 for N2; 8g = L for N; 8y = 9 for O; g=3, g1=2, g,=3 for 02;
g, = 4 for NO. Strictly speaking, atomic oxygen has two more
levels with &—e=0,0197 and 0.0282 eV, and NO — a level with
e1—e=0,0153 eV. However, at temperatures on the order of several

thousand degrees, these levels may be included in the ground / 20

state by changing its weight correspondingly. When calculating
the statistical sums by means of computers, one takes a larger

number of terms, but the contribution of the higher-order terms
i1s small.

Heat capacity of gases

Now we shall show how the heat capaclity of a gas, whose
composition does not change with a changing temperature, can be
obtained in terms of the statistical sums of various degrees of
freedom of a gas. Since the thermodynamic functions of a gas can
be expressed in terms of the statistical sums, this will at the
same time 1llustrate the computation of the former.

The classical theory of heat capacity of gases assumes that
the energy of molecules 1s equally distributed among all degrees
of freedom and equal to kT/2 per degree of freedom, except for
the vibrational degrees, each one of which contributes the energy
kT. Hence the heat capaclty of a gas volume containing n mole-
cules can be expressed as

Cy= (—;—'i + i') k’l,

where 1' is the number of the vibrational, and i1 is the number of
all other, degrees of freedom of the molecule.

If only the translational and rotational degrees of freedom
are exclted, then the heat capacity of a gas composed of linear
molecules will be

5
Cy=g kn, (1.22)
15




and of nonlinear molecules

cv._:(_;_.{__:_)kn=3kn. (1.23)

When the vibrational degrees of freedom are excilited according to
classical theory, one adds the expression i'kn to the above

expressions.

Classical theory turns out to be valid only within certain
limits, and only a statistical theoryigives résults that are
applicable within a wide range of gas parameters [see Eq. (1.6)].
For a system having a number of degrees of freedom, in the absence
of their interaction, the total statistical sum Z represents a
product of the statistical sums corresponding to the individual
degrees of freedom.

Z=2,Z:Z,Z, - (1.24)

The statistical sum for a gas consisting of molecules of
several types, equals the product of statistical sums for each
type, Zi’ divided by the factorial of the number of molecules

Ny of a given type in the system; Z, is given by Eq. (1.24).

Since the heat capacity at constant volume is given by the /21
logarithm of the statistical sum [see Eq. (1.6)], then each of
the factors in the statistical sum makes its contribution to the
heat capacity independently of the others. Consequently, the
heat capacity changes depending on the temperature as different
degrees of freedom become excited: for the air at room temperature
it is determined‘only by thé translational and rotational parts,
defined by the classical formulas, and with increasing temperature
up to several hundred degrees the vibrational degrees of freedom
become excited. Here for a harmonic oscillator the heat capacity

is

— p (To[T)? exp (T,T)
.=k
Vvib " ep @ —1p

(1.25)
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The plot of the vibrational heat capacity versus T/TV is
shown in Fig. 1.3. With lncreasing T/Tv’ the heat capacity
approaches its classical value, equal to k. However, even at

kET=hv 1t differs very little from the limiting value for

cy

As shown in Table 1, the
/// characteristic vibrational

—_— —1 temperatures are very high,

g5
and under these conditions
chemical reactions play a
g 1 : significant role. Therefore, .
y » “ ¥ %7 % e vibrational heat t
Figure 1.3 Heat capacity of e vibrationa eat capacity
a single vibrational degree of a gas does not reach 1its
of freedom versus temperature classical value.
T/Ty
1.3 Basic concepts and definitions of chemical kinetics
Homogeneous reactions
In chemical kinetics, we write reactions in the following
form

&
A+B ?iC+D- (1.26)

where kf and kr are the rate constants of the forward and reverse
reactions; A,B,C,D are the substrates and products of the
reaction.

Depending on the conditions, either the forward or reverse
reaction may be dominant, but to some extent the process always
goes in both directions.

Reactlons are called monomolecular 1f one molecule partici-
pates in an elementary reaction; bimolecular - if two molecules
are substrates, etc.. It is clear that the molecularity of the
forward and reverse reactions may be different. For example, in

;Translator's note: Illegible in original foreign text. 17
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the reaction A=B+C the forward reaction is monomolecular, and the

reverse one - bimolecular.

In general, the reaction equation may be written in the form

n L]
=2 .

Eajz\’;@;bjx;, (1.27)
where the sum 1s over all components participating in the reaction.
The coefficients aJ and bJ (stoichiometric coefficients of
the reaction) enter simultaneously in the equation, since the
same substance may be among the substrates or products. If a
substance appears (or disappears) in the course of a reaction,
then on the other side of the equation the corresponding coeffi-

clent is zero.

A change per unit time in the amount of a substance deter-
mines the rate of the reaction. The reaction rate depends on the
concentration of the components and can be expressed differently
depending on the way in which the concentration is expressed.

The concentration of a substance i1 may be expressed in
terms of the number of its molecules per unit volume, n,, for
example [l/cm3]. The molar volume concentration is defined as
the number of moles of a substance per unit volume [mole/cm3]:

n
(Xl=2k. (1.28)
where Ny=6,02-102% 1s the Avogadro number. /

The molar mass concentration cyq is defined as the number of

moles of a substance per unit mass [mole/g]:

oL
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As the relative concentrations, we use the following:

1. Molar fraction
-y

T (1.29)

E{ =

2. Mass fraction (relative density)

—_mn__ e My
Y Imny e IMmy ? (1. 30)
where m, is the mass of a molecule of a substance; M, 1is the

molecular welght of the substance.

3. The degree of dissociation 'a’ 1s the ratio of the number
of dissociated molecules to their total number before dissociation
at constant mass of the gas.

4, The ratio of the number of molecules of a substance
per unit volume to the equivalent number of molecules (the number
of molecules obtained when recalculating the initial number of
molecules n. 1in proportion to the density):
: e}

= —3 Neg=NRec| —]} .
=R (P-»)' (1.31)

A reaction rate is most simply expressed in terms of the
molar volume concentratlons: according to the law of mass action,
the rate of change of a component Xk in a constant volume 1in a

direct reaction, expressed in terms of molar volume concentrations,
will be

R Y LDy 1o IO - T B
d[X . ‘v 18
2y a0 [ 11X

1=1 (1.32)
and in a reverse reaction
d[X,) = ’
=t @—b) [Tixn", (1.33)
J=1
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where k4, kr are reactlon rate constants (the subscript f here
refers to the forward reaction; r — to the reverse one).

It will be noted that dividing Equation (1.32) by by—as,
one obtains quantitles which are identical for all components parti-
cipating in the reaction. The expression md[’m—k ﬂ[X,]" /24
represents the rate of the forward reaction. Slmilarly lone ob-

tains the rate of the reverse reaction.

It is easy to also write the rate of a reaction in terms of
the number of molecules per unit volume, using (1.28). The dimen-
sionality of the rate constant depends on the units in terms of
which the concentration 1s expressed. In the case of concentrations
expressed in mole/cm3 the dimension of the rate constant for the
reaction (1.32) is [mole]1 8 [cm3]s -1 [s ]—1 where . a; » 28nd in
the case of the concentration expressed in terms of the number of

molecules per unit volume whose dimension will be [cm3]s“l [s]-l.

The value of s determines the order of a reaction. If
s =1,2,3, etc., then the reaction is called a reaction of first,
second, third order, respectively. The order of a reaction can be
established experimentally by using Eq. (1.32). Then the value of
5 1s considered an unknown. For complicated reactions by proceed-
ing in several stages the order of a reaction may not coincide with
its molecularity and may even be fractional. Evidently in such
cases the equation of a reaction of the form (1.27), relating
only the initial and final products (the gross reaction), does not
reflect the complexity of the process.

The reaction rate constant does not depend on the concentra-~
tion of substances and pressure, but it depends on the temperature.
According to the Arrhenius law, the rate constant can be expressed

as

k=B (T)e RT, (1.34)
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where Ea is the activation energy; B(T) 1s a factor multiplying
the exponential (the classical Arrhenius law is obtained if B is
independent of the temperature).

The exponent in the Arrhenius law yields a very sharp tempera-
ture dependence of the reaction: at temperatures much less than
E.JR , the rate constant is very small, and generally the reaction
occurs only at temperatures on the order of E.R

It 1s possible to interpret the Arrhenius law on the basis of
the kinetic theory of gases [3]*. However, a theoretical determina-
tion of the reaction rate constants 1s so far impossible, and /25
theory at best gives only the order of magnitude of the constants,
or makes 1t possible to make a reasonable extrapolation of the
avallable data¥*¥, Therefore, the rate constants are found
experimentally.

The sequence of elementary reactions, occurring in a systemn,
1s called the reaction mechanism. A reaction mechanism may involve
a lot of branching (branched reactions) and include the set of
reactions that do not enter the equation of the gross reaction,
connecting the initial and flnal reaction products. The inter-
mediate processes may determine the reaction rate, and therefore
from the form of the gross reactlon it not always possible to
draw conclusions about the order of a reaction, its pressure
dependence, etc. In particular, for example, in a monomolecular
reaction there may participate inert atoms that do not change
during the reaction, and the reaction will actually be bimolecular.

EAN] . s L

O+ M—204M,

* A reaction between molecules occurs only when the energy of
colliding molecules exceeds a certain threshold E_. The exponent
in Eq. (1.34) corresponds to the temperature depefdence of the
number of molecules with energy greater than Ea‘

**  gSee, for example, [U,5].
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In this example, the reverse reaction occurs through three
collisions. A detaliled explanation of the reaction mechanism is
a very complex problem that has been completely solved only in
very rare cases. The reaction mechanism may depend greatly on
the temperature: as a result of the strong dependence of the
reaction rate on the temperature, with a change in the temperature
reactlons that hardly occur at other temperatures may assume great
importance. However, in many applications 1t 1s enough to know
the equation of the gross reaction and the corresponding reaction .-

rate coefficients.

It is clear that the total change in the amount of the sub-
stance during a reaction is determined both by the forward and

reverse reactions:

2P —ky e an [TUXA" 41, (@~ [T1X2".

d Ju1 j1 (1.35)
The reaction rate can be written as
n aj"-'n T n ’J
J,=k,n[X]] —k,n[Xj] . (1.36)

J=1 J=1
In the initial stages, when only the initial substances exist
in the system, the reaction goes primarily in the forward direction.
As the final products accumulate, the reaction rate slows down,
and in the state of equilibrium the rate of the forward reaction is
equal to the rate of the reverse reaction (for any k):

alx) _
arrmalt (1.37) £26

Egs. (1.36) and (1.37) imply that in the state of equilibrium
the ratio of concentrations is constant. This quantity is called
the equilibrium constant

L] .’
o l}__}l (X))

k, n *
ay (1.38)
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The temperature dependence of the equilibrium constant can

be expressed 1in the form
AE
K. =F(T)e B, (1.39)

This dependence is also very sharp, since it is mainly determined
by the exponent exp (—AE/RT) . However, in contrast with the
Arrhenius law the exponent involves the binding energy AE
rather than the actlvation energy E It is easy to see from
Eq. (1. '38) that the binding energy’ is equal to the difference
between the actlvation energies of the forward and reverse reactions.

One can introduce the equllibrium constant that connects the
partial pressures of the components 1f one uses the Clapeyron
equation p;=[X;RT

p;’

~ >

b y—a
K, (RT)f(r 1)
7y

/] (1.40)

K =

I4

~Ta

Thlis quantity also depends on the temperature and the molecular
constants.

If one Introduces the statistical sums ch’ in each of which
the energy 1s measured from the lowest state, the equilibrium con-
stant can be written as

ﬁ z:; _&E
K.= J=1 e R7T,
1 z (1.41)

J=1
and, consequently, 1t can be calculated using the methods of
statistical mechanics. The exponential multiplier in this formula
i1s the quotient of the statistical sums of the ground electron states.

The equilibrium constant can be used to determine the rate
constants of the forward or reverse reactions, if the rate constant / 27
of the reaction going In the opposite direction i1s known. The
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present state of theory and experimental techniques 1s such that
in many cases this method is more reliable than a direct deter-
mination of both reaction rate constants. However, it should be
kept in mind that a determination of reaction rate constants
assumes that the reacting system is homogeneous and that there is
a thermodynamic equilibrium in vibrational, rotational, and
translational degrees of freedom. This imposes certain restrict-
ions on the use of reaction rate constants and on the possibility

U IUN SIS RT3 SV S S

of their extrapolation to unusual conditions. '’

It will be noted that for reactions going through triple
collisions the activation energy is negligible, and therefore the
rate constant for the reverse reaction, as shown in experiments,

may be written in the form

k,(T)=B(T)~T—:—. (1.42)

Thus, the rate constant for the forward reaction can be expressed
in terms of the equilibrium constant

AE
ky=B(T)F(T)e X, (1.43)

and the activation energy is equal to the binding energy, in this
case the dissociation energy.

By using the equilibrium constant, Eq. (1.35) will be
written in one of the following forms

2] _ (b, — 0, [Kc [Txa”~ITixa ”] ; (1.44)

s e reeanbl el J=1 ’
1 (5 — ay) kf[l’l 1 ——=T1 lxn"’]. (1.145)
=1 ¢ J=1 -

The dependence of the reactlion rate on the density p can
be conveniently studied by golng over to the relative density
(1.30). In terms of the new variables, Eq. (1.35) will be
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written as

[ ] n
oy (o \EOT, AN
M, t—(No) ks (b a")ﬂ(u,) + 3
n n
AL PPN & T AY)
+(~.,) (@ *)jrll(u,) : (1.46) / 28
(It i1s clear that MJ and N0 may be introduced in the

definition of the reaction rate constant. Hence we obtaln a rule
for the conversion of the constants.)

Eq. (1.46) implies that the greater the stoichiometric
coefficients on one of the sides of the reaction equation, the
stronger the dependence of the reaction rate on the density. 1In
particular, for binary reactions

*
24 2 A, (1.47)
r
in which the rate of change of the substance is written in terms of
the molar volume concentrations as

(1.48)
LA Ar— K A,
we get
1 da
T @ = b lpoh KT, (1.49)

This implies that the rate of a monomolecular reaction does
not depend on the density. The rate of a binary reaction is
proportional to the density. Similarly, the rate of a reaction
golng through triple collisions is proportional to the square of
the density, etc.. If in the equatlon for the binary reaction
we make a change of variables t=pt , we obtain a similitude law
for a binary reaction: 1f the density 1s multiplied by a certain
factor, the corresponding times become reduced by the same factor.
This "binary similitude law" is used in the aerodynamics of non-
equllibrium processes, and it takes different forms depending on
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the specific problem. A similar law for triple collisions is

given by t=p%, etc..

In addition, there are a number of other general laws for

chemical réactions.

1. In each reaction, the number of atoms of an element
remains constant (law of the conservation of mass).

2. Dalton's law p= Z}p. . In particular, this 1awﬂassumesL3LN
a particularly simple form when using relative densities and molar

fractions,
n R

1.21‘1‘:1; '-2151=1. (1.50)

3. The law of conservation of energy. Since the formation
and breakdown of substances leads to a change in the energy con-
tained in a substance in the form of the binding energy, chemical
reactions are usually accompanied by thermal effects. If, for
example, the formation of substance A is accompanied by an ab-
sorption of energy hA per mole, then the formation of a substance / 29
in the amount AA leads to an absorption of energy hiA[A] . The
total thermal effect of a reaction is determined by summing
similar expressions over all components.

Heterogenous reactions

In addition to homogeneous reactions, i.e., reactions occur-
ring in one phase, in aerodynamics we may also deal with hetero-
geneous reactions, i.e., reactions between different phases. In
particular, such processes occur in the theory of the boundary
layer, where reactlions are possible between a gas and a solid or
liquid material of the wall around which the gas flow occurs. In
a simplified formulation of the problem, the reactions occurring
at a solid surface may formally be written in the form

./ (1.51)

A+ surface T—i B - gurface
-»r
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If the surface substance affects the reactions, it may
either participate directly in the reaction or serve as a catalyst
for reactions in the gas phase. Formally the rate of a reactlon
on the surface is written in the same way as for reactions in the
gas phase

d [A]

dt == ku][A]n‘ +kwr[Blhf (1 .52 )
where nlrandn2 are the orders of the forward and reverse reactions,

and the reaction rate 1s per unit surface area.

Reaction rate constants depend on the surface materlal, gas
component, and the surface temperature. Tables of kw for differ-
ent materials are glven in Section 5.1.

By analogy with the preceding, one can also intro-
duce the equilibrium constant

— _ker __ [Al3
K= e (1.53)

and the reaction rate can be written in the form
—d_[.‘i]_=—-k n'__[_A;]_;‘_ L
=t fiar -2 ar). (1.50)

In particular, with a catalytlic recombination of dissociated
atoms on the surface according to the reaction of the form (1.47),
the reactlons are usually of first order:

(S SINECRUID B & S PR

A e Al
— =t — Al
(4]p
The equilibrium constant [A2) for atoms of oxygen and nitro-
P
gen, recombining on the surface, whose temperature is below
2,000°K, is very small. Therefore, we can neglect the second /_30

term of Eq. (1.55) in engineering applications. " Otherwise, the
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second term ls also small in a majority of other catal&tic

reactions occurring in industry.

Therefore, in a majority of cases

d[A n
d[tlz—k"[’q] > (1.56)

In those cases when the surface material itself participates 1n
the reaction, a detalled analysls of the processes occurring

on the surface ls a very complex problem due to the change of
the surface properties. ' '

1.4 Nonequilibrium processes in a high temperature gas

Let us consider in more detail the physico-chemical processes

in gases at high temperatures.

Three processes associated with a change in the internal
degrees of freedom are characteristic of a high-temperature gas:
excitation of the vibrational degrees of freedom of multi-atomic
molecules, dissociation, and ionization, and they manifest them-
selves precisely in this order as the temperature increases. The
characteristic temperatures of the corresponding processes for
components of the air are: for vibrations (2—3).103K , for disso-
clation (6—10)-104+ K , and for ionization, (I—5)-10° K ©  Similar

relations among the characteristic temperatures hold also for

other gases. Our attentlon below will be focused mainly on high-
temperature processes in the air and in ifs components. From the
point of view of aerodynamics, we are also interested in processes

occurring in mixtures :econtaining 002 and CO.

Vibrational relaxation

The relaxation of the energy of vibrational degrees of free-
dom reduces to an exchange of the energies of the vibrational
degrees of freedom with other degrees of freedom of molecules and
to its redistribution among the vibrational degrees of freedom.
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Most often one considers the exchange between the energies of the
vibrational degrees of freedom and the active degrees. In pure
form, this process is of importance under conditions when the
vibrational degrees may contaln substantial amounts of energy.

The rate of the energy exchange process affects both the
amount of energy stored in the vibrational degrees of freedom and
the instantaneous value of the kinetic temperature of a gas. In
addition, the excltation of vibrational degrees of freedom 1is / 31
assoclated with dissociation, since the excited gas molecules under-

go dissociation.

Exchange of vibrational energy

A molecule can change its vibrational energy only in a colli-
slon with other particles. Two extreme types of collisions of
molecules in a gas are possible from the point of view of a change
of the vibrational state of a molecule: 1nelastic, in which there
is an exchange between the vibrational energy and the active
degrees of freedom, and elastic when there 1s an exchange of
energy among the vibrational degrees of freedom alone (resonant
transitions).

Obviously, Iintermediate cases of the simultaneous exchange
of the vibrational energy of one molecule with the kinetic and
vibrational energles of another molecule are also possible. The
rate of energy exchange in these processes is proportional to the
frequency of collisions and the probability of transition of a
molecule from one level to another. At temperaturss Xeéss than
the characteristic temperature, the probability of the exchange of
vibrational energy in the process of elastic collisions of the
molecules of a pure two-atomlc gas is higher by several orders
than in the case of inelastic collisions, and therefore the re-
laxation process in pure two-atomlc gases consists actually of two
processes: fast and slow.
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The fast process, characterlized by the short time of relaxa-
tion, leads to the establishment of an equilibrium distribution
of the vibrational energy among molecules, and maintains it sub-
sequently. However, the vibrational temperature Tvib’ which can be
introduced for such an equilibrium system, is not equal to the
kinetic temperature and only the slow process occurring simul-
taneously through inelastic collisions leads to the equalization
of temperatures. It 1s clear that, 1f a two-atomic gas consti-
tutes an admixture to a one-atomic gas, then the fast process is-
absent, since one can neglect the collisions of two-atomic mole-

cules among themselves.

The probability of transitions of vibrational quanta de-
pends on the character of molecular collisions. In many cases,
the collision process may be considered to be close to adiabatic,
l.e., close to a process for which in the case of vibrations a
large number of molecular vibrations occurs during the collision
time <t . If 1.=afvy, 1s an estimate of the collision time,
where a 1is the radius of the intermolecular interaction, and

g_./[m” is the mean velocity of the molecules, we shall obtain
the adiabaticity condition in the form *-ﬁ>1 . The physical
meaning of this parameter is that, during a relatively slow adia-
batic collision, the impact of the oncoming molecule is averaged
over all atoms of the molecule, and the energy is transferred /32
to the molecule as a whole, and during a fast non-adiabatic
collision the interaction involves mainly one of the atoms in
the molecule, which receives the entire energy transferred dur-
ing the collision. The character -of the collision changes the
temperature dependence of the probability of a quantum transition.
The parameter v determines the conditions under which one can
expect the appearance of the nonadiabaticity of a collision.

Thls 1s possible for heavy molecules, excited molecules, and with

high molecular speeds.
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A majority of gases that will be considered below undergo

adlabatic collisions in the range of conditlons characteristic of
aerodynamic studles. The nonadiabaticity of a collision may be
manifested, for example, in mixtures of I2 with He at temperatures
less than 1000°K. At temperatures corresponding to the maximum
population of the lower levels, malnly single quantum transitions
to neighboring levels are lmportant, and the probability of multi-
quantum transitions turns out to be much lower. This permits us
to use the ‘harmonic oscillator model with good accuracy, and a
majority of the calculations of the probability of transition

are made under this assumption.

Calculation of vibrational relaxation

Most frequently, the equation of relaxation of vibrational
is taken in the simple form

energy evib
deyip 3 —e
2t =.£3Lib-(7—;”4¢lih” (1.57)

where eyy,(T) 18 the vibrational energy corresponding to the
thermodynamic equilibrium with translational degrees of freedom;
T 1f the time of relaxation.

If eyyp(T) 1s considered constant and the initial value of the
vibrational energy 1is set equal to e then the solution of

Eq. (1.57) is

vib0?

$
eyip T —e gy =legsn M —eyy e o
and, consequently, the time of relaxation is equal to the time
during which the initial difference between ey, (T) and e,
by a factor of e.

ib changes

The derivation of Eq. (1.57), starting with the classie¢
work of Landau and Teller [6], was considered by many workers
(see, for example, survey of literature in [7]) under various
31



assumptions about the physical model of the process of relaxation,

It was shown theoretically that an equation in the form of (1.57) /. 33
may be obtained for the process of relaxation of pure two-atomic

gases or a mixture of a small quantity of a two-atomic gas with a
one-atomic gas. However, in both cases the model of the harmonic
oscillator must be laid as a basis. Theory (see [7]) gives the
following expression for the time of relaxation

A\, ..
el wiroo LooowMAL Eg gu[ {"!C( g;ﬁ*q#l)] v j
T, L /P15 ) (1.58) K

where f is the number of collisions of a molecule per second.
Py is the probability of the molecule transition during a
colllision from the first vibrational level to the gound level. i
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Figure 1.4 Time of relaxation of vibrational degrees of
freedom of gases (Millikan and White's study of the
experimental results obtained by different authors)
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Since the theoretical dependence of P, on the temperature
in an adiabatic collision has the form InPypy~T-» , then also the
time of relaxation depends on the temperature mainly as exp—T-% ,
and the direct proportionality of the density of the number of
collisions per unit time determines the direct proportionality

N

between Ty and the pressure.

If the anharmonicity of vibrations plays an important role
or the model of a harmonic oscillator with a cutoff is used (see
Eq. (1.12)), then Eq. (1.57)‘turns.out,to be invalid and a more
detailed study of the process of relaxation based on kinetic
equations must be used. Therefore, Eq. (1.57) may be viewed as an
approximate equation which describes the process better, the
lower the temperature as compared with its characteristic wvalue.
The calculation of the transition probability presents a number
of difficulties (see, for example, [8,9]), and a comparison of

the theoretical results for PlO with experimental data shows the

possibility of a discrepancy by an order of magnitude [10]. As
far as the temperature dependence 1s concerned, the agreement with
experiment 1s not bad (Fig. 1.4).

If the transition probabilities are known, then the relaxation
process may be considered, using the kinetic equations, as describ-
ing the time dependence of the population of different levels of
a quantum oscillator (see, for example, [11,12]). Such an approach

is widely used in theoretical calculations of relaxation and has
made it possible to obtain a number of interesting results, par-
tlially presented later,

Recently, general theoretical studies have appeared which
make it possible to obtain the relaxation equations under very
general assumptions starting with the Boltzmann equation [13-17].
Such an approach turned out to be productive in the study of
vibrational relaxation. Thus, in [18], based on [13], the time
of relaxation for N2 and O2 was obtained using a computer for
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possible large differences
between the temperatures of
Fiv 'kG:sec/cm? the vibrational and transla-
o N, gov - tional degrees of freedom.
A comparison of theoretilcal
results for the model of a

103

104 harmonic oscillator with a
cutoff with the results of

05 experiments done by various

m% workers is shown in Fig. 1.5.

Q05 007 409 K™V

Figure 1.5. Comparison of
theoretical time of relaxa-
tion with experimental data
obtained by various workers
(curve—theoretical data;
points—experiment)

Experimental data

The time of vibrational relaxation at high temperature is
mainly determined experimentally in shock tubes. Camac [19] who
studied the relaxation of O2 in a mixture of oxygen with argon in
the temperature range 1200-7000°K gives the following expression
for the time of relaxation.

%:nClT"6[1~—e-xp (—%”)]exp[—(C/T)“l- (1.59)

where n is the number of molecules in 1 cm3§ é=l£M(i30%)JO7K .
The constant C, depends on the type of colliding molecules; for

—12.107 , for O, the constant 1s C,=6-10-7—*
aregon Gi=12-107 T ! sec.-T'® part,

The times of relaxation, obtained according to Blackman's
date [20] for oxygen and nitrogen are

T,-p=1,6-10"" exp ( ";11/:4) kG- sec/cm? ; (1.60)
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T, p_l 1 lO""T'/zexp( i ) kGesec/cm? , (1.61)

The rate of vibrational relaxation of nitrogen oxide was
studled by Robben and Rae. Robben [21] in the temperature range
400-1500°K has not found any effect of argon admixture on the
relaxation process up to 99% argon content. Rae's experiments
[22] encompassed the temperature range from 1500 to 7000°K. He
found that the. effectiveness, oftthe NO-NO- collisions is approxi-
mately 50 times higher than that of the NO-Ar collisions. His
results are 1n better agreement with theory than Robben's. How-
ever, 1t must be kept in mind that the relaxation of nitrogen
oxide 1s anomalous, and does not fit into the general scheme (see

71).

The most comprehensive data on the times of vibrational re-
laxation for various gases are given in a paper by Millikan and
White [23]. These workers reduced the well-known results to a
particularly simple form: in semilogarithmic coordinates PTo
and T—% , they constructed the straight lines that give the
corresponding relations for oxygen and nitrogen, and then through
the point of intersection of the stralght lines ( (pr,=10-8 kG
sec/cmz, (TK)™% =0,03 ) they have plotted straight llnes that best
fit the experimental data for a large number of other gases (see
Fig. 1.4).

It turned out that this type of simplicatilon is possible in
many other cases. It was assumed that the vibrational system
allows only one type of collision between a two-atomic oscillator
and another molecule. One also excludes the case of resonance,
as for example for the N,+CO[24), system [24], even though, as we
can see from Figure 1.4, such an approach may also be used in
the case of multiatomic gases. In addition, when one of the
particles is very light—for example, a helium atom— the experi-
mental points do not fit a universal relation.

N\
W
N
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Figure 1.6. Relaxation times for
vibrational degrees of freedom of
gases (taking into account molecular

masses)

This approach permits us to present in a general form, valid
in the temperatuge range from 500 to 8000°K, numerous relations
for the relaxation time that have been proposed earlier. This
is also convenlent for extrapolatlon in cases when the experiment
gives only a few points.
The plot shown in Fig. 1.6 [23] may be more widely appli-
cable. The plot also includes collisions with a light component.
Here the straight lines do not pass through a single point any
more but instead they depend on the parameter u [u 1s the reduced
mass, see Eq. (1.17)], selected as a result of many tests. / 37
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The relation illustrated in Fig. 1.6 has the form

pr,=exp[A (T~"—0,015u14) — 18,42]. (1.62)

The values of A are given in Table 2 and in Figs. 1.7 and

1.8. %

72
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Figure 1.7. Plot of the Figure 1.8. Plot of the
coefflicient A versus reduced coefficlent auy—'r versus the
mass u for CO and O, (mole- characteristic temperature
cules colliding with CO or Tomhv/k

0, are shown around the
cgrresponding points)

TABLE 2

VALUES CHARACTERIZING THE VIBRATIONAL RELAXATION OF VARIOUS GASES #

co— co—|co—
Ar co , He Hy

Gases| N2

o) Oy— | Op—
AZ:- (o)) He H, Fo {Clg| Bra| I

m 14/ 16,51 14/ 3,5|1,75 17,8' 16| 3,56 | 1,88 | 19135,5!79,9(126
T, K [3395] 3080 |3080| 3080 | 3080 ; 2239 12230 2239 | 2239 |1284] 812] 465(310
A |20 213|175, 9 68 | 165 | 1291 67 42| 65| 58} 48| 29

¥ Commas represent decimal points.

Using the Landau-Teller theory [6] which gives the principal
term which 1s retained in more detailed analysis [9,10], one can
obtain the relation between A and the reduced mass p and the
characteristic temperature T (see Fig. 1.8):
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Ig pt, =5 10171712 — 0,015p1) — 8,00, (1.63)
The accuracy of this formula is illustrated in Table 3 [23].
On the average, the deviation is less than 50%, which is quite
acceptable if one considers that the formula encompasses the

following ranges 1,756<p< 127; 310K<T,<3395K; 280 K<T<8000K .
Of course, one must keep in mind that the relation is not satis-

fied, where dissociation becomes Jj;mportant. However, in general,
Eq. (1.63) increases slightly the time of relaxation for colli-
sions with a two-atomic molecule, and lowers it for collisions
with atoms.

TABLE 3

COMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES
OF THE TIME OF RELAXATION#*

Gases TK Toexp. % theor.
Ny 5000 6,6-10—6 6,5-10~6
2000 7,4-10—4 6.4-10—¢
co 5000 1,9-10-6 3.10-6
2000 6.8-10-5 1-10-5
0, 5000 4,0-10~7 4,4-10-7
2000 6.0-10—6 7'8.10~5
1000 1.0.10—+ 1/2.10—¢
500 2'5.10~3 £10.10-2
O,—Ar 2000 3,0.10-5 1.10-5
= 1000 2.9.10—4 1,9-10—4
cl, 300 6,8-10~6 3,6-10-6
Br, 300 9-10~7 5.10~7
I, 400 1.10-7 1-10~7

*  Commas represent decimal points.
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Vibrational relaxation of a mixture of gases

If a two-atomic gas constitutes a small fraction in a mixture
of one-atomic gases, then using the condition 1%1=&, ’
where fia 1s the number of collisions of a two-atomic molecule
A per second with molecules of a one-atomic gas 1; f is the
total number of collisions per second, and & 1s the molar
fraction of molecules 1, one can obtain the time of relaxation

of a mixture from the relation

. .
== Dbl (1.64)
) .
Here t.; 1s the time of relaxation of a two-atomic gas, obtained
when all molecules of one-atomic gases are replaced with mole-
cules 1. For a binary mixture of a one-atomic gas A with a
two-atomic gas BC, the expression for the time of relaxation

is 1 1—§, €a

Ty TBC—BC Ta_sC (1.65)

The relaxation of a mixture of two-atomic gases 1s greatly /39

complicated as a result of the possible processes of vibra-
tional energy exchange among components of the mixture [25].
Thus, in a binary mixture of two-atomlc gases A and B three
relaxation times are possible: two correspond to the relaxation
of pure gases (TA and TR and the third TR corresponds to an
exchange of vibrational energy among the components.

If the exchange may be neglected (tap>7a, 18) » then the
relaxation of each component is independent, and when calcula-
ting the rate of relaxation for each component one does not
have to take into account the internal degrees of freedom of the
second component. If the exchange cannot be neglected, then
varlous cases, determined by the relative values of <4, ts tas
are possible. Thus, for st <<tz there is first a redistri-
bution of the original vibrational energy among components of
the mixture, and after a time a8 from the beginning of the
process, it may be considered an equilibrium process. After
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that the energy of translational motion will become converted to
the vibrational energy of component A, since .t .

The exchange of vibrational energy results in a transfer of
vibrational energy from component A to component B, and silnce
Ta>7tap the dlistribution of energy between A and B will be an
equilibrium distribution. As a result, the relaxation of gas A
occurs more slowly, and that of gas B speeds up and the process
i1s characterized by a single time of relaxatiqn, Intermediate

between T, and TRe

If ta<ktapkts , then initially an equilibrium energy
distribution is established in gas A, and then the vibrational
energy 1s removed from the equilibrium distribution of component
A to component B.

As a result, the time of relaxation of gas B becomes less

than TB. The time of relaxation of the mixture is determined

by TAR®
In either case, the time of relaxation depends on the relative
concentration of the components of the mixture.

The systems where an exchange of vibrational energy among
components 1s important alsco include the practically important
mixtures  N,—0O, 0,—H, CO—0, 1n addition to N,—CO . As
shown in [26], the gas N2 at temperatures below 3000°K in mix-
tures N,—O0; 1is excited much faster than in the case of a pure
gas, but still slower than O2 in the same mixtures. The process
cannot be explained as a transfer of energy from the translational-
degrees of freedom in collisions of N2 and 02. The transfer of
vibrational energy from O2 to N2 only slightly extends the
time of relaxation of 02. At the same time, the time of relaxa-
tion for N2 decreases, for example, by an order of magnitude
at the temperature 1600°K.

With an increase in the temperature, the effect of resonance

exchange becomes smaller.
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Relaxation of multiatomic gases
Comparlson of the times of relaxation

In multiatomic gases, the vibrational relaxation 1s even more
complicated than 1n two-atomic gases as a result of the presence
of a large number of natural forms of molecular vibrations. 1In
some cases, one can draw an analogy wilith the Millikan-White
generalization [27]. One can make two extreme assumptions that
simplify the discussion of relaxation: either all forms of
vibrations are equlvalent in the transfer of energy from tfansé
lational degrees of freedom to vibrational ones (parallel excita-
tion), or at first one of those forms is excited, and then there
1s an exchange of energy among the vibrational degrees of freedom
(sequential excitation). In the first case, one writes and
solves relaxation equations like the Landau-Teller equation for
each form of vibrations, as, for example, in [28]. However, in
general this area has been hardly touched.

From a comparison of the times of relaxation for different
gases, one can draw the following general conclusions [1]:

l. Two-atomic molecules have the longest times of relaxa-
tion.

2. At a given temperature and pressure, the time of re-
laxation 1s in general longer for molecules with a large bind-
ing energy.

3. Three-atomic linear molecules have longer times of
relaxation than the nonlinear three— or multiatomic ones.

, Admixtures of other gases may have an extremely large
influence on the time of relaxatlion. For example, the time of
relaxation may be sharply reduced by water vapor.
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Chemical Reactions

Kinetics of reactions in the air

The dissociation of molecules into atoms followed by the
Interaction of the atoms among themselves and with the nondisso-
clated molecules 1s a characteristic feature of the behavior of
multiatomic gases at high temperatures. In a gas mixture—for
example, in the air—the reaction 'seheme &dti'high temperatures is
very complicated and usually includes a large number of reactions
part of which are important in a certain temperature range and
unimportant in another, where other reactions may play the prin-
cipal role. The discovery of a reaction mechanism, playing an
important role under given conditions, is the most important
problem of the chemistry of a high-temperature gas.

For the air in the temperature range from 2000 to 10,000°K,
the following scheme consisting of five reactions is considered

basic
(1) 0,+M+5,1 eV %204-'»1; (1.66)
(2) N,4+M49,8 eV ;":QN—}-M; (1.67) -
(3) NO+M1+65eV 2N+O+M; (1.68)
(4) N+0,4 14 ey Z2NO+Os (1.69)
(5) O-+N,+33 oy =NO+N. (1.70)"

(Here M is a third molecule.)
To this scheme we add still another reaction

(6) N2+02+109 eV22NO. (1-71)
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The scheme includes three dissociation reactions (1,2,3) and
two exchange reactions (4,5). The calculations originally made
without considering reactions (4,5) have led to significant
errors. Reaction (6) was considered in the calculations made
after 1962, since in the studies published in [29,30] it was
found that 1ts rate 1s suffliciently high and the reaction may be
included in the system of equations. With the reaction rates
found, the reaction in question has an effect on the initial
formation of NO:behind+a shogk:wave,.even lts effect on the
thermo— gnd gas-dynamic parameters of the flow is small.

However, recent studies [31] of the rate constant of the
forward reaction (6) give values 10 times lower than those
obtained in [29], and a conclusion was drawn that the reaction
may be neglected. [31] emphasizes that the NO balance is
primarily influenced by the reaction

2NO 2 N,0+-O.

In these calculations, the final results about the effect
of reaction(6) were used only recently.

Thls reaction scheme was intensely studied by varilous
workers, and the reaction rate constants continue to be found
with increasingly greater precision. From time to time, papers
appear in which the aerodynamic problems similarly formulated
are solved again by using new data on chemical kinetics or by
considering new processes which have not received enough atten-
tion before. As will be shown below, thus far there are no
firmly established expressions for reaction rate constants.
However, the results already available are in many cases suffi-
cient not only in approximate calculations but also when one
wants to obtain fairly reliable values of various quantities.

The values of the equilibrium constants are much more
reliable, and can be considered to be established with a high
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degree of accuracy. For the reactions given before, the con-
stants are listed in Table U4 [22] (see also [32]).

The existing rate constants for reactions in the air are
studied in detail in [7,22]. As compared with the first calcu-
lations made by Duff and Davidson [33] and S. A. Losev (see [7])
using a full system of reactions in the alr, the reaction con-
stants have changed a great deal. We shall show the variations
of the rate constants using an example of oxygen dissociation.

TABLE U4
EQUILIBRIUM CONSTANTS K,=%. FOR REACTIONS OF AIR COMPONENTS¥  ,
Reaction mole/cm3 -

(1) O+ M220+ M AJ%%5u4_§g%
@ Ny +M2N+ M xsgx;;(_ ”2T4‘5°)
(G)NO+MN+O+M 4,0exp(— 75;’00)
(4) N+ 0, 2NO+0 4,2exp( mTom)

() 0+ N; > NO+0 4,5exp(— 37;"00)
(6) Ny + Oy 22 2NO lgexp(—- 21:90)

¥ Commas represent decimal points.

Earlier, papers often used the rate constant for oxygen
dissociation obtained by Mathews [34]:

k,=1,1-105T 2% ex (—-59—390_) em’-
4 P T Jmolersec’ (1.72)

The same constant was also recommended in [7] for the temperatures
2400-T000°K on the basis of results obtained by S. A. Losev
and N. A. CGeneralov.
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The rate constants for reactions (1,3) occurring inLcol-
lisions with molecules that do not change during the reaction
depend on the type of colliding molecules. Rink, Knight, and
Duff [35] give the following values for recombination constants
for oxygen, determined in the temperature range 3000-6000°K

6
4,7-10"T7; 1,6-10°7; 4,8.10°%7 1 SR (1.73)

molez_- sec

The authors have received these values for the cases when the
other participants of the collislon are Xe, 02, 0, respectively.
It 1s noted that the experiment gives a deviation of the degree
of the pre-exponential dependence on the temperature from -1/2

to -2. The minus one power in the above expressions was selected
arbitrarily. Camac and Vaughan [36] give the following constant
for the dissociation of oxygen in argon

—_ L1081 _ 59 800 cm3
#y=3,6-10°T exp( == )-———mole_sec. (1.74)

Rae [22] gives the relation kj0=25 kjar and k,N,z—:-k,o,. . The
last relation coincides approximately with the one recommended in

[7]. The other reactions have been studied to an even lesser / i3
degree.

The existing lack of agreement on the reaction rate con-
stants results in a situation where different workers use different
values for these constants. Therefore, in the appraisal of the
results of calculations one must consider the possible effect of
the constants, and when comparing the results of different calcu-
lations one will have to give a summary of the reaction rate
constants used. In any case one must consider the fact that the
numerical factor 1n front of the rate constants of even relatively
thoroughly studied reactions may be improved within an order of
magnitude, and — what 1s even more important— one can improve
the temperature dependence of the pre-exponential factor, giving
the extrapolation of the constant to the region of higher
temperatures.
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We shall only glive a summary of the reaction rate constants
published relatively recently. Apparently, the most complete
summary of the reaction rate constants for the air is gliven in
a paper by Lin and Teare [37] (Table 5).

TABLE 5

SUMMARY OF REACTION RATE CONSTANTS FOR AIR¥*

. U U 3,8-1
v -Regetion 1.2 M kf(cm ) sec
()0, +MZ2040+M o 6,2:10~8 73
0, 2,2-10-8 72
N, 1,7-10-32 712
@ N+ M2N+N+M N, NO 8,3-10~3 713 / 44
N 6,5-10~27 7
N, 7,6-10~2 713
@GYNO+MI2N+O+M | 05 O, NO 3,0-10-2 712
NO 5,5-10-27 73
@ O+N;Z2NO+N O, N, 04, Ng 2,8-10-27—¥2
— 2,7-10m1
(5) N+ 0;22NO + 0 - 2,2-10-14 rexp(-i:'i-)
(6) N; 4+ O, 2 NO 4 NO - 0,47"5’2exp(— %M)

¥ Commas represent decimal points

These constants differ from the constants used in the earlier
papers by the same workers (see, for example, [38]); the constants
also do not coincide with those recommended by the Soviet workers
for the range from 2000 to 6000 -~ 8000°K (Table 6) [7].

Finally, Martin [39], basing himself on Bortner, gives a
summary of constants which also gives an estimate of their
accuracy (discrepancy in the powers of the pre-exponential factor)
(Table 7).
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TABLE 6

SUMMARY OF REACTION RATE CONSTANTS FOR AIR¥

Reaction M kfcm3/mole *sec
(1) 0+ M-~0+0+M 0, 5,2-1010TY2 (D/RT)S exp (—DJRT)
D=118kcal/mole] N; |2,5-1007T2(D/RT)*? exp(—DJRT)
0o-  16,25.1027Y2(p/RT)*A exp (—DJIRT)
N, NO | & :
Ar 4,2.1011 712 D/RT exp (—D/RT)
(2 N+ M+>N+N+M N 4,25-1000 7Y2 (DJRT)*? exp (—D/RT)
D=25kcal/mole| N 1,85-10127'2 (D/RT)"*® exp (—DJRT)

0, 0, NO| &}

Ar 6,8.101 7V2(D/RT)"5 exp (—D/RT)
(3) NO+ M-+N-+O+ M [0y, Ny, Ar| 7-100072(D RT)2 exp (—D,RT)

D =150k cal/mole| NO, O, N | 20 ¥4}

(4) O+ Nz~ NO+N - 7-1013 exp (—75 500/RT)
(3) N4+0;,+-NO+O — 1,3-1010 exp (—7100/RT)
(6) Ny + O, -~ NO 4+ NO - 9,1.1024 752 exp (—128 500/RT)

R=1,987 kcal/mole K

- % Commas represent decimal points

Here for k. and k, the expression  AT%FRT was used. The value

of A is given in (cm3/mole)s—1-sec_2 where s is the molecularity
of the reaction.

We shall also note [U40] which gives the dissociation rate
constant for N,, given by _‘d_":]- —2k,[N,][M] » @5 equal

to 4,8:107- 10T R —ERT, 4 3.10% T3y e—ERT; 1,9.10"T~V?%e—ERT cm3/mole,
respectively, where M represents N2, N, and Ar. The constant E/R
is equal to 133,200°K.
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TABLE 7

SUMMARY OF REACTION RATE CONSTANTS FOR THE AIR ¥

Forward Reverse
reaction reaction
Reaction M 4 b iilﬁ 4 b iﬁlﬁ
Ng, 052,3-10181 _[1,9-10160:3
(1) O,+M20+03M| © [8,5-10%1 111 | 50400]7,1-1012%4 |_yp| o
M | 3-1018%! -12,5.1015£1 |
N, [3,8-1019+0:4 2,5.10180,4
(2) Np+ M2NHN+M| N ]1,3.10%0£05 [ 113000 7-10"8081—1 | o
M [1,9-1019%1 1.1018+1 / U5
(B)NO+MIEN+O+M| M [2,4-1017%" | ;0| 755003,2-1018! |1 | 0 —
(4) O4+N22N+NO 6,8-1013+%3 | o | 37750(1,5-101%03 1 o | 0
(5) 04-NOZ2N+-0, 4,3-107x%3 | 3/9( 19100[1,8-10%+%:3 | 3,2 3300
(6) No+0,222NO 2.10M 0| 61600, 1-10'3 0 | 1500

¥ Commas represent decimal points

Kinetics of reactions in mixtures containing 002

In addition to reactions among components of the earth's
atmosphere, the reactions between gases contained in the Venu-
sian atmosphere— N, CO, O —are also interesting. The
reaction mechanism in this case becomes even more complicated.
A summary of reactions which are considered to be principal in
such a system is given in Table 8 [41].

Reactions (1) and (2) in this table represent the reactions
of dissociation of the basic components and yield CO and oxygen
2 and CO2
[reactions (3) and (15)], where the latter together with reaction
(16) of the dissociation of O, forms a chain equivalent to the
dissociation of 002. Carbon monoxide CO dissociates as a result

and nitrogen atoms. The oxygen atoms react with N
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of reaction (4). The rate of reactions involving CO depends
very strongly on the presence of even small quantities of water,
H, and OH. Therefore, reaction (6) together with reaction

(17) forms a chain equivalent to the dissociation of COZ’ but

in many cases goling much more rapidly. It should be noted that
the reactions with H:0,0,H form a very complicated system
which 1s reflected in a very simplified way by reaction (5)

that leads to the formation of hydrogen.

In many cases, one must consider radiation 4nd ‘include a
reaction of type (18) in the system. Reactions (7-14) are
included to study the processes of ionization.

The rate constants for dissociation of O2 were considered
earlier. The remaining reactions have been studied less. The
rate constant for dissociation of CO was obtained as an estimate
based on an analogy with other dissociation reactions. The
rate constant for reaction (18) i1s also an estimate whose

accuracy 1s half an order.

. A more detailed analysis of the system of reactions in mix-
tures containing CO, has shown [5] that one can 1imit himself to
the reactions given in Table 9.

These reactlon rate constants have been obtained using ex-
perimentally found values [42-U44] (see also [U5, 46, UT7]).

Relation between the dissociation rate constant
and the excitation of vibrations

The rate of dissociation, as usually defined in chemical
kinetics, assumes the existence of equilibrium between trans-
lational and vibrational degrees of freedom. With rapidly
occurring processes, there may not be equilibrium among vibra-
tional degrees of freedom, and the distribution of the vibrational
degrees will be of the Boltzmann type, but will differ from the

k9
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TABLE 8

REACTION RATE CONSTANTS IN THE MIXTURE OF 002 AND N2 ¥
ﬁeaction k EEE k
f sec T
(1) CO; + M2 CO+O+Mj1.10—8 ¢~ 30,4007 1.10-%8
(2 Ny + MZ2N N M| 5,17:10-6 712~ 13,0007 | 3 37 1g—3; 7112
3) O+ N, 2N +NO 1,17.10—12 712 =38.50/T | 9 99, 10—13T1/2
(4) CO4+-M22C + O + M| 1.10-8 ¢—125.000/T 1.10~3s
(5) H:0 + M 22 H+OH+M|1.10—11 ¢—50,300T 1.10n
(6) CO, + HE2CO +OH |5-10~12¢™16,780T 3,83-10—14 ¢—5:1907
() No+ MZNF + e + M|2.10—207%2 (1+2x 5.10-3
5 105 "_e) 181,000
) N+ MZZN+ + e+ M |2.10—20732 (1+2x 1.10-27
% 105 28 ) ¢ —158,000/7
n
(9) CO3+M > COF +e+M|2-10-20T%2 (1+2x 5.10-26
% 105 _"A) 160,000
n
(10) CO4+M 22 CO+ + e+M|2-10~20 732 (1+2x 5-10—28
X 105 ._°_) e—169,500/T
n .
(1) O+ MO0+ + e+ M|[2.10-20T (1+2>< 1.10-27
% 105 _ie_) e—140,000/7
n
(12 N+ OZ2NO+ + e 1,2-10—12 ¢—32:000/T 1-10-8
(13) N+ NZ2N} +e 1,87.10—14 7 o—57. 7007 1.10-57712
(14) O+0205 +e 2,79-10—15 79,65 —80.800/T | g, 10571
(15) O+ CO,22CO+ 0,  |1-10—12e—29,500/T 1.10—15 ¢ 25,0002
(16) O, + M20 + O+ M |9,18-10—77—12¢=59.80/T | 6 0g.10~32 717
(17) OH+ M 20 + H+ M|1.10-8 =500 1-10-%2
(18) CO+NZ2CN+0 4.10—12 TV/2e—46.000/7 2.10—13 712 —5,300T

*® Commas represent decimal points
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TABLE 9 *

Reaction

PR

Ky

cm3/mole-sec

(1) CO;+MZ2CO+04+ M
QN +MIN+ M
(&NO+M2N+O+MM
9 CO+M2C+0+ M |
G)CN+MZ2C+N+ M
(6) N+ O2ZNO +N

() N+ CZ2CN+N

(8) CO+NZ2CN+0

(9) CO+NOZ==CO, + N

¥ Commas represent decimal points

1,2-100 712 exp{ —
8,6-1019T—1 exp(

2,9.10197-t exp(

',\.'p)“,y, Sl_m .

8,5- 1019 -1 exp(
5,2.10097—1 exp(
7,0.1018 exp(

2.1010+1 Texp(
2.1010+1 Texp(

1.10%2 72 exp(

34
T
13
T

g

3
g
LN L AL

g

. LAY L L e

8960 '

5»

«

24
&

H

S anet”  “e®

equilibrium distribution for the given temperature. In
particular, in normal shock waves at high temperatures the times
of vibrational relaxation and dissoclatlon become comparable,

and these processes occur simultaneously.

Since the excited

molecules mainly dissociate, the rate of dissociation will also

change [48-5117.

It is known [52] that,

in the case of a harmonic oscillator

wlth an infinite number of levels, the distribution of the
vibrational levels approaches the equilibrium distribution, going
through a sequence of Boltzmann distributions corresponding to

the instantaneous vibrational temperature.

As shown by approxi-

/ 48

mate calculations, in the case of an oscillator with a cutoff,
the distribution differs from the Boltzmann distribution.
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According to current ideas, the molecules dissoclate when
their vibrational energy exceeds the binding energy (energy of
dissociation). The more a molecule 1s excited, and consequently
the higher the vibrational levels are excited, the less energy
must be transmitted to the molecule in order for it to dissoclate,
and the more effective are the collisions of molecules with a
smaller relative energy of translational motion.

There are two methods of regarding dissociation: in the
first method, one assumes that moTecules may dissociate from any
level if only the energy transmitted during a collision is
sufficient for dissociation. In the second, the dissociation
may occur primarily from the highest levels. It is taken for
granted that in both methods an important role is played by the
excitation of the intermediate levels, and consequently, by the
entire process of the establishment of the vibrational equili-
brium. Cases are possible [53] when the stage determining the
rate of excitation of the upper vibrational levels is 1n the
form of the excitation of certain intermediate levels, above and
below which the process of energy exchange occurs much more
intensely. In particular, the existence of such intermediate
levels with a slower exchange may lead to a certain overpopula-
tion of the upper vibrational levels in the processes of expansion
of a two-atomic gas and to a corresponding slowing down of gas

recombination [54,55].

The model that takes into account the coupling of dissocia-
tion to vibration and considered in [56] is called the CVD model
(coupled-vibration-dissociation). However, [56] has not taken
account of the reverse effect of dissociation on the energy of
vibrations. This was Included later in papers by Treanor and
Marrone who have analyzed the process in more detail (CVDV
model). They have studied both possible approaches to the pro-
blem of dissociation [57,58,59] of two-atomic molecules.
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Since these effects were used in the calculation of relaxation,
we shall state théir results. The calculations use a model of a
harmonic osclllator with a cutoff. The distribution of the vi-
brational energy 1s assumed to be of the Boltzmann type, except
that 1t corresponds to the time dependent vibrational temperature,
rather than the temperature of the vibrational degrees of freedom.

The mean vibration energy of molecules has the following
time dependence 4Eyip Eyip(T)—Eyip E(T, Tyib) — Evib ( d [Xy) )
r ISSR 1

at Ty _ [N [X2]‘ tef "'v'dtft' > “(1.75)
E(T, T)—Eyvib [d[Xy]
(X3] ( dt ),' .
where T 1s the temperature of the translational degrees of free-
dom;
Tvib -1s the vibrational temperature: / b9

E(T, Ty4p) -1s the mean energy lost by the vibrational
degrees of freedom during one act of dissocilation;
E(T, 1) -1s the mean energy obtained by the vibrational
degrees of freedom during one act of recombination;

[x -1s the concentration of the X5 molecules.

5]
The subscript f refers to the dissociation process, r to the

recombination process. The terms —EYib(‘LX”l) _ Evib (d—x’) express

[X:] dt Jy [X9) dt /,

the varlation of the mean vibrational energy as a result of a

change in the number of excited molecules during dissociation and

recombination. It will be noted that in the second and third

term we used the product of two mean quantities even though it

was necessary to use the mean of the product [60].

In the state of equilibrium 4[Xd_, |
dt

Let us conslder the case when dissociation is possible from
any level. The probability of dissociation from level v is

given by
Py=CNyfo, (1-76)

where Nv is the population of level with energy Ev;

fv 1s the number of collisions with the relative collision
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energy greater than D—E,;
C 1s the normalization factor (Zp,=1).
v

In the case when the translational and vibrational degrees of

freedom obey the Boltzmann distribution

1
N, = 7. (Tvib; exp(—-E,fkTVib); (1.77)
fo=exp[— (D —E,/kT)), (1.78)
where Z(Tyqp) is the partition function for temperature Tvib:

Z (Tyip) = Xy exp(— EofkT,41). (1.79)

- A

Substituting (1.77) and (1.78) in (1.76), we get

(1.80)
Py= Z(Tm)exp(-EJkTmL
where 11 1
Tm T... T°

The vibrational energy lost during one act of dissociation
is Ej‘ Consequently, the mean energy lost per act is

1 0
E=2£.,,p,,= szvexp(——Ev/kTm)-_— ——ka,, T InZTa)- (1.81)

Hence .
E(Ty,)=E(Tm and  E@ T)=E(w). (1.82)

To calculate E in explicit form, we must select an
oscillator model. For a linear oscillator, cut off at energy

D, we get
-~ Thv
2 Sr (-2 1—exp (—57)
—kv-o p( o )— l—exp(—h?‘) ' <1.83)
kT 3

where v 1s the smallest integer closest to -fL , and
v

Av Thv (1.84)

E(Tm) = — .
e " exp(hVRTR)—1 T exp GhyAT L) — 1
S T—-—)&
-
E(T. T =Tu3\w’é Tm) = % By (o —1). (1.85)

Collecting all the terms, we can write the relaxation
equation in its final form:
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dEyipb Eeo—Eyib kv kv
~=Vib _ — o — — Eyip| X
dt Tg exp (Av/kTg) — 1 ohy )
°""(»r,,.)" ) (1.86)

1 _d[Xq 1 d[X)

1~
X ar © [? @=Dhv—Eyip _]r (X)) dt

The temperature dependence of E i1s shown in Fig. 1.9.

When dissociation occurs primarlly from the upper levels, the
line of reasoning remains similar, except that the probability of
dlssociation from level v is writtegias

pﬂ;CF(v)'N,f,,, A (1.87)
where F(v) is the probability of transition from level v to the
contlnuous spectrum.

For F(v), we take the expression
F (v) =exp[ — (D — Ep)rU], (1.88)
where U 1s a parameter, with the dimension of temperature, whose
values are selected by means of a comparison with experiment.

The formally negative value (-U) may be viewed as the "vibra-
tional temperature" at which molecules recombine.

Again, in view of Egs. (1.77), (1.78), (1.88), we obtain the
followling expression for the probability

. (1.89)
Po="Zap °*P( — Eo/kT ),
where 1 1 1 1
Tp Typ T U

and for the energy

- 1 i
EQ. Tyip)= Y Ere= & N e (=BT —Egin @ (1.90)
v v

1
Z(—U)

ET,.T)= EsvexP(Ev/kU)=E.Vj_b (—0). (1.91)
v

55

/ 51



. 1 Considering dissociation of

20 N u a molecule X2 from a vibrational
] level v as a result of collisions
, with a molecule A, we obtain

: \ from the definition of P,

! \\. ! J
~16-12-06-0% 0 0% 08 I,/im

Jn

12 \

.9. i t alXa)) _ .
rigure 19, Vertation of the () - patnit (152)
lation between dissociation

and vibrational degrees of

freedom depending on the and consequently,
temperature T for 0, (N=27) .
m - [ X
kf,,=k,p,—i5‘,—;]]-.'- (1.93)

Since k, does not depend on the number of molecules on the
level v (it is independent of Tvib)’ then #» may be written

as

_ zm Z@yvib) (1.94)
kro=kreq Preq exp (— Ey/kT) =ksPo exp(— E;AT 1y )

and consequently,

kreq  Z(Ty3p) Puexp(—EJRT)  Z(Tyip) Z(—U) (1.95)

For y=w we obtain expressions for the equilibrium disso-~
ciation from any level. The method of the calculation of kf in
the CVD method 1s the same as in the CVDV method. One only
changes the relaxation equation for Evib’ and conseguently also
the time dependence of Tvib'

It is clear that, if we consider the incomplete excitation
of the vibratlonal levels, this will reduce the rate of disso-
ciation. |

Fig. 1.10 [58] shows the variation of the dissociation rate
constant, calculated using the vibrational temperature obtained
by setting to zero the first two terms on the right-hand side
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of Eq. (1.75). The plot was based on experimental data for
oxygen obtained from [19,36] and extrapolated by means of Eq.
(1.95) to the domain of higher temperatures. As shown in calcu-
lations, the temperature dependence of the dissociation constant
is stronger in the case when dissociation occurs primarily from
upper levels (approximately ~7-35 as compared with ~7-' in the
case of equiprobable dissociation). Such a strong temperature
dependence of dissoclation from upper levels is not confirmed
experimentally, and apparently indicates that the calculations
used too high a rate for upper levels (approximately equal to
300:1). However, there are no experiments as yet which would
provide a basis for a rellable choice.

The corrections obtained cannot be used at temperatures
above 10,000°K.

To estimate the effect of the fact that the distribution
of the vibrational levels differs from the Boltzmann distribu-
tion, a calculation was made of the relaxation in the shock
wave of a gas composed of fictitious molecules (harmonic oscilla-
tors), having 18 levels of vibrational energy. The time of re-
laxation, energy, and rate of dissociation were the same as for
oxygen. (For hydrogen such calculations were made by Pritchard
[61]). These calculations may be interpreted as a relaxation in
a gas during a sharp increase in temperature and pressure after
the equilibrium in translational and rotational degrees of free-
dom has become established. The distance of a gas element from
the front of a shock wave corresponds to the development of
a process in time. The probability of a transition from level v
to level v - 1 1s taken in the form &, , ,=vky, , Where

1 1
k=" The population of a level, n,s 1s taken 1n

T ] — e—n-/;r

the form fL=expL—Ed%] , where 6, is the "population
0

factor" for level v; in the Boltzmann distribution all 0,

are identical and equal to the vibrational temperature.
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vibrations for dissociafion
primarily from upper levels

-Figure 1.10. Effect of the as a function of the distance
nonequilibrium of vibrations behind the shock wave for
on the dissociation rate con- P.=0.263 mm Hg; u«.=44i0 m/sec
stant: (éas comgosed of molecules
. having 18 vibrational energy
% B pri??igriizsgii:giggéion levels, constitutes 4% admix-
- €q ture to argon):

1 - temperature of translation-
al degrees of freedom;

2 - model without dissociation;

3 - model taking into account
dissociation with vibration-
al degrees of freedom

The results of calculations for a strong shock wave propaga-
ting at the speed u.(T-~17030 K) are showﬁ in Fig. 1.11 [58]. 1If
there is no dissociation, all ¢, are identical, and relaxation
goes through a sequence of Boltzmann distributions (curve 2).

Calculations including dissociation were made for both
equiprobable dissociation from any level and dissociation pri-

L R

marily from upper levels.

In the latter case, the rate of recombination to a level v was
taken in the form

e'uhvlkU

17 ’
2 eﬂhv[kU
v=1

kry =k,

(1.96)
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Figure 1.12. Rate of disso-
ciation from different leéeveld
of vibrational energy as a
function of the distance be-
hind a shock wave for p,=0.263
mm Hg; u.=4410 m/sec (gds com-
posed of molecules having 18
levels is a 4% admixture to a
argon):

1l - model accountling for rela-
tlon of dissociation to vi-
brational degrees of freedom;

2 - total rate of dissoclation

where [36]
mole2-.gec-

ky = 3. 10157'—1‘2 ——CIIL and U= %——

&
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Figure 1.13. Concentratlon of
molecules behind a shock wave
(ratio of moles to initial
mole) as a function of the dis-
tance behind the shock wave

for Pl=0°263 mm HE; uws 4410
m/sec?

1 - dominant dissociation (gas
consisting of molecules with
18 levels);

2 - model considering the
relation of dissociation to
vibrational degrees of freedom
(dominant dissociation);

3 - model considering the re-
lation between dissoclatilon

and the vibrational degrees of
freedom - equiprobable disso-
clation (% Ar+4% gas conslst-
ing of molecules with 18 levels).

D
k-

(D is the dissociation energy of oxygen).

Such a rate function corresponds to the case when the con-
stants for the upper levels are approximately 300 times greater
than that for the ground level. For an equiprobable dissociatlon
and all k, are identical. | ‘ /53
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Fig. 1.11 [58] shows the variation of population factors in
the case of dissociation from upper levels. It is interesting that
the curve for the Boltzmann distribution (solid line 3) enters
the region 6, for the upper levels,

Similar calculations for an equiprobable dissociation gave
an even greater discrepancy in population, but the vibrational
temperature obtained for the Boltzmann distribution, 1s close to

Ov—s- Thé calculations for weaker shock waves (T.=6000° gave simi-
R R BTN S

lar results.

Since the vibrational temperature changes similarly to e,
for those levels from which most of the dissociation occurs, the
rate of dissociation calculated using the vibrational tempera-
ture of the Boltzmann distribution is very close to the total rate
of dissociation from 18 levels (see Fig. 1.12). The total effect
on the concentration is shown in Fig. 1.13 [58] in comparison with
the calculations based on the Boltzmann distribution. The agree-
ment must be considered good, and this justifies the use of the
Boltzmann distribution in calculations involving vibrational re-

laxation.

It is interesting to note in Fig. 1.13 the appearance of a
time lag (induction period) for a model with dissociation pri-
marily from the upper levels. The appearance 1s related to the
fact that the upper levels must be sufficiently populated before
noticeable dissociation begins. The induction period was
measured by Ray [62]. However, even for this quantity there are

-not enough experimental data.

Ionization

In gases at high temperatures, two ionization processes are
possible (ionization by radiation is not considered): ionization
due to an impact and ionization accompanied by chemical reactions.

Collisions of molecules having a large relative energy may be

60

/54



R x|

[NUGIVUSLY S

accompanled by a change of thelr electronic state: electrons, ab-
sorbing energy, are capable of makling a transition to a higher
energy level. This process ls called the electron excitation.

If the energy transmitted to an electron 1s sufficiently high,
the electron may completely separate from a molecule. In this
case, we have impact lonization. Partners 1in collisions may
include both neutral molecules and electrons and ions

(1.97)

A+A—AtA+te; o
Ate— A+ 42 (1.98)
A4 A+ =24+ te. (1.99)

The energy necessary for lonization is called the ionization
potential I (Table 10) [63]. Depending on the number of ionized
electrons, one speaks of the first, second, etc. ionization po-

tentlal. The lonization energy increases for each successive
ionized electron.

TABLE 10

Sub- H
stance

1 15.4|24.5]114.6 [15.6 13;6 12.1} 9.3/15.8 | 21.5 | 10.4

5| He N | N, o |o, | NO | Ar Ne Hg

Remarks. 1 eV = 1.6-10"17 J = 3.82°10729 ca1 = 11,600°K

Sometimes collisions lead not only to removal of an elec-
tron, but also to a combination of molecules or to an exchange
of the composite parts of the molecules,
are the lionic reactions of the type¥*

/55

Such, for example,

A+ B— AB+4e;

(1.100)
A+B-— AB+e.

(1.101)

% A reaction of the type (1.100) going in the forward direction
is called a reaction of associated 1lonization, and in the
reverse direction - a dissociative recombination.
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These processes occur, in general, with less energy than impact
ionization, since the required energy is less than the energy of
formation of the final composite molecule by one order of magnl-
tude. Therefpre, it plays an important role at relatively low

temperatures.

It is clear that the total electric charge of a gas volume
does not change as a result of the internal processes occurring in
it (law of the conservation of charge).

In addition to the processes of ionization in gases, 1t is
also possible to have processes of charge redistribution

~

§
i

At B— A4 B* (1.102)

and electron sticking :
A_-{-e—»A-, (1.103)

which also change the concentratlion of ionle components. Even
'though the charge in this case does not change, the total rate of
ionization may, due to the fact that the rate of reactions with
the participation of different ionic components 1is different. As
a result, the total number of ions may change.

Jonic reactions in a system composed of several components
may be very diverse, and in order for them to be taken into account
it is necessary to have a detalled knowledge of the reaction
mechanism with all the difficulties resulting from it. The ionil-
zation mechanisms are in general understood even less than the
dissociation processes. The equllibrium concentration of elec-
trons and lon components, ionlzed m and m + 1 times, 1is given by
the Saha equation

Im-H

AmiiBe o Zme1 [ 27mekT \8:2 —~ T
it g Fat ( e ) e \ (1.104)

which may be obtained as a law of mass action for the equilibrium
concentration of substances in the reacion A,==An4+e . Accord-
ingly, in the expressions for Zm Zmn the energy 1ls measured
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from the ground state, and the partition function of a free elec-
tron is equal to twice the partition function of its translational
motion.

The difference between the ground energies of lons is equal to
the ionization potential. The right-hand side of Eq. (1.104)
represents the equilibrium constant K,n(7) of the ionization
reaction. As the relative concentration, one introduces the
degree of ionization, B , equal to the number of free electrons

per inltial molecule B==%} , and the ion concentration,
N——m - _n1V=__n¢
?m—-N N —Np (N1 1s the number of molecules of type 1 per

unit mass of the gas).

Passing in Eq. (1.104) to relative concentrations, we get

m e 1
Smeibe Lo Ko (), (1.105)
m
In particular, for the first ionization p,=p,=p , and
B oz (znm,kr 2 ~%F (1.106)
2nm kT 312~ RT

1—3 7z, N\ a2

Ionization in inert gases

Ionization 1s most simply studied in inert gases, since
in them the ionization process is manifested in the purest form
without complications due to any prior processes involving
excitation of vibratlons and dissociation [64].

For example, when equilibrium 1is established in argon it 1s
possible for impact ionization, mentioned above, to occur. The
electron-atom collisions yield maximum effects. However, in
order for the process to be important, a certain definite elec-
tron concentrationmust be achieved. Therefore, in the initial
stages an Important role is played by other processes, in parti-
cular by the atom-atom collisions.

A study of ionization in argon under the conditions of a
sharp temperature rise [65] has led to the conclusion that the
process may be subdivided into three successive stages. In the
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initial stage I, the principal role is played by an ionization
process due to atom-atom collisions. The process occurs in two

steps

atom excitation A+A—-A+A . (1.107)

and its ionigzation A+ A—-At+e+ A,
(1.108)

where the excitation is the step that determines the rate of the
process. .Such a two-step occurrence of the process turns out
to be more effective than direct ionization of the atom.

The electrons produced possess a relatively low energy,
and it is only after a certain number of collisions with heavy
molecules that they acquire enough energy for ionization of atoms.
When the number of such electrons is sufficient, the principal / 57
stage II begins in which ionization occurs through electron-
atom collisions (1.98) [66]. However, also in this stage one
considers a two-step process along with direct ionization.

The rate of ionization in the principal ionization zone is
completely determined by the local concentration of ions and
electron temperature. The velocity distribution of electrons in a
gas may be considered Maxwellian, except with the temperature
which is different from the atom temperature. This 1s related
to the fact that the exchange of electron energies occurs faster
than the energy exchange between electrons and atoms (the
numbers of collisions are different by approximately a factor of
105), and the ionized electrons are not in equilibrium with

heavy molecules.

In order to define the electron temperature, one uses the
equation representing the balance between the rate of energy loss
by the electrons as a result of ionizing collisions
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and the rate of energy increase as a result of elastic collisions
with hotter atoms and ions. The temperature corresponding to a
translational motion of atoms and ilons is uniquely determined by
the local ion concentration and the energy equation. Since the
energy losses 1n each lonization act are large, and the elastic
exchange of energy with heavy molecules occurs slowly, the electron
temperature turns out to be less than the temperature of the

heavy molecules.

During an exchange with heavy molecules, the elastic colli-
sions with ions become more effective than the collisions with
atoms even for a low {on the order of 10~3) degree of ionization.
Therefore, with an increase in the degree of ionization, we have
a rapid increase in the electron temperature and an increase in
the rate of ionization. As a result, it turns out that the
electron density increases monotonically approximately exponen-
tially until the rate of recombination limits the growth of con-
centration. Then Stage III begins in which recombination is
dominant.

Ionization in the air

When the temperature increases sharply to very large values
(k(T>D) the ionization in the air should apparently resemble
ionization in argon. However, in the temperature range kT<D
the phenomena occur 1n a much more complex fashion. An analysis
of the processes 1n this range becomes simplified due to the
fact that usually the degree of ionization of a gas is low, and
the processes of ionization do not strongly affect the chemical
processes and the energy balance. This makes 1t possible to
separate the chemical processes from ilonization, to con-
sider the temperature, density, and chemical composition inde-
pendently of the ionization, and then to obtain the ion concen-
tration using the instantaneous characteristics of the mixture
that have already been computed. For shock waves in the air,
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the upper limit at which such a separation of processes is still
stsible lies in the range of shock wave speeds which are some-
what greater than 9 km/sec, where the degree of lonization

reaches nearly 1%.

A full 1ist of ionization reactions in the ailr is given in
[37] which discusses several dozen ionic processes (see also
[67-69]. It is not particularly difficult to consider all these
reactions. However, to get an approximate idea of the rates of
ionizatlion reactions, we must solve the problem of determining
which of these processes is of greatest importance from the point
of view of lonization.

For the air under the conditions of shock waves moving at the
speed up to 9 km/sec, the following reaction represents a process

in the above category

N+O+28 eV2NO*+4e (1.109)

and at higher temperatures the reaction

N+N45,8 eV NS +e. (1.110)

is in that category.

All other possible ionization reactions occur with a
greater energy loss. Finally, at high temperatures the ioniza-
tion by electron impact yields a comparable reaction rate.

The constants for these reactions, as given by different
workers, also differ widely. Thus, [37] gives the following
constants for the reaction (1.109).

3
— .10—117-—1,2 (_32500 c_m__;
ks 5 exp r )sec

1.11
K,=(1,4-107T +1,2-107°T* 4 1,4 10“5T3)exp(—@). (1.11)

Ray [22] also gives the values for these constants

ky=64-10°T"* exp( _32&) em3 Y (1.12)
T /mole‘sec?

K,=3,6-10717% exp(_@) .
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Martin [39] gives the following values for the constants (see

Table 8): k=13 1o“rexp(—3—‘i°‘i)___°m3-
' T /mole-sec |
k,=2.10°7" em>__ (1.13)
mole°sec -
The experiments made recently have shown that Eq. (1.111)
gives a value for the recombinatlion rate which is 2-3 times
too low [70]. A better agreement with experiment is obtained by

using a relation deduced theoretically in [71]:

3
k,=4,8-10""(kT)""?[1—exp (—0,27/#T)] <=—;

sec
Ko=1,4-10""%T [1 —exp(—0,27/kT )] ™' exp( — 2,8/4T),
where kT 1s expressed 1n evV.

(1.18)

In addition to the fact that the lack of precision in our
knowledge of the rate constants for the reaction (1.109) affects
our knowledge of the electron concentration, we must keep in mind
that — since the latter 1s determined by the concentration of
N, O, and NO — the concentration is affected by all constants of
the system of chemical reaction in the air (1.166)—(1.171) . Conse-
quently, the accuracy of the electron concentration calculations
is lower than the accuracy of the calculations for the neutral
components of the air.

The lonization of gas mixtures other than the air has been
studied even less. Some data on the reactions and ionization
constants of CO and CO2 may be found in Table 8.
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CHAPTER 2

N
o)

GENERAL PROPERTIES OF NONEQUILIBRIUM FLOWS —

2.1 Equations of state and motion of a relaxing gas

The equations of motion of a compressible gas aré based not
only on the laws of mechanics, but also on thermodynamic relations.
Therefore, the first problem will be to determine the necessary
thermodynamic properties of a relaxing gas. ‘The thermal equation
of state of a pure gas may in general be written as

_ 2RT .
p=Z(p 1), (2.1)

where Z(p,T) 1s the compressibility factor.

Let us limit ourselves to the range of densities, where one
can neglect the Van der Waals corrections. Under these conditions
which are usual in classical gas dynamics, the compressibility
factor for a gas whose composition does not change is equal to

unity.

Thermal and caloric equations of state of a gas mixture

The thermal equation of state of a single-component gas is
expressed in the form of the Clapeyron law

=R =R r_
pi= o 0T =K T=n T, (2.2)

where R=1987 cal/mole- K=831-10® J/kcal - K= 0,081 m3 kg/kmole »
K-cm2 is the universal gas constant; ny is the number of gas molecule-~
cules per unit volume. Gases that obey Eq. (2.2) are called

thermally ideal. Gas mixtures obey Dalton's law which expresses

the total pressure of a mixture in terms of partial pressures of

the components, PF=;P- . Using the Clapeyron equation (2.2)
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for components, we obtain the thermal equation of state for a
gas mixture under the assumption of thermodynamic equilibrium
of translational degrees of freedom.

= = —0p,T, .
P Em 3} kT = 2 Py (2.3) /64

where T 1s the temperatufe of the translational degrees of free-
dom of the gas.

The density of a mlixture is defined by

9—2 Pi—z "‘M‘. (2.4)

Comparing this expression with Egs. (2.2), (2.3), we define the
effective molecular weight of the mixture

En,M,

Now we can write the thermal equation of state in a form analogous
to (2.2):

M=

(2.5)

_R
—EPT. (2.21)

If the composition of the gas does not change with pressure
or temperature, then the gas mixture behaves like a thermally
ideal gas. However, if the composition changes, then the analogy
with Eq. (2.2) becomes formal. Therefore, it 1s more convenient
to write Eq. (2.2') in a form analogous to Eq. (2.1) by introduc-
ing the molecular weight of the mixture, MO’ under the conditilons
of normal pressures and temperatures, when there 1s no gas
dissociation

M My

The ratio %%==Z(P.T) is also called the compressibility
factor or the pseudo-compressibility factor (Fig. 2.1).

Very simple relations are obtained for the dissociation of a
diatomic gas consisting of identical atoms:

A, Z A+ A,
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Figure 2.1. Compressibility factor
for the air (based on tables from

[2-41).
If M1 denotes the atomic component, then the molecular weight
of the gas 1s Mo=2M, . The mass concentration of the atonmic
component 1is / 65
Q= Min, — ny =_p_,
i Min;,  P1+2n ] (2.6)
[

and of the molecular component

Mong  _ 2ny
z Mln‘ ny + 2"2 )
‘.

=il d)

Then the equation of state (2.2) with the use of the relation
a+ax=1 may be written in the form

ay=

It is clear that

-—PRT(Gl +1—a1) (1+ax)_ (2.7)

It is clear that the value of aq
Consequently, the compressibility factor which is equal to
1 + a, for a diatomic gas according to Eq. (2.7) may vary
from 1 to 2.

may vary between 0 and 1.

To determine the equilibrium state of a gas with a constant
composition, 1t 1s sufficient to specify two parameters, for
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example, the pressure and temperature. The third parameter is
determined from the equation of state. If a gas changes its
composition, then the equation of state 1s not sufficient,

and it 1s necessary to use additional relations to determine
the composition of the gas. The law of mass action gives such
relations for equilibrium states.

In application to a diatomic gas, Eq. (1.38) gives

ni

=K.

Using the expressions for mass concentrations, we get

ny=a,(n,+42ny); ”2=%(1—ﬂx)(’11+2ﬂ2) (2.8)
a’
and :

2(ny+2n,) =K., (T);

l—ay

since m(n,+2n;)=p, then

)
oy

l—ay

=‘2_;—K¢'(T)- (2.9)

Egs. (2.7) and (2.9) determine completely the state of a gas,
and here 1t 1s enough to just know the pressure and temperature.

It 1s important that the system of algebralc equations obtained
is nonlinear.

In addition to the thermal equation of state, relating the
temperature, density, and pressure, a gas 1is characterized by
the caloric equation of state. The caloric equation of state
relates the internal energy of a gas to the thermodynamic
state variables. Using the expressions for the energy of the
individual degrees of freedom of a gas and knowing its composi-
tion, it is not difficult to obtain the caloric equation for a
gas mixture. For example, for a dissociating diatomic gas, if
eq is the energy of the atomic component, ey - the energy of
the molecular component, then the energy per unit mass of a

7
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Figure 2.2. Specific enthalphy
of the air (based on tables
from [2-4])

gas will be

R D
e=“131+(1"“x)32+0’1ET. (2.10)

For a gas mixture, one needs to sum the energies over all gas

components. Thus, the thermodynamic functions of a dissoclating /67

gas depend on its composition (Fig. 2.2).

Calculation of the equilibrium state of a gas mixture

To calculate the equilibrium composition of a gas mixture,
one uses the law of mass action for each reaction in the
system, the conservation of the number of atoms (equation of
material balance) and Dalton's law. These relations are
sufficient to determine the equlilibrium composition of the gas.

Suppose that there are k components that may be involved in
r reactions. Each component may consist of a different elements
Ay . For example, the composition of a molecule ki will be

2 Ny Ay o
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To characterize the compositlon, we shall use the molar fractlons
of the components, & . Dalton's law, expressed In terms of molar
fractions, is

LA]
2e=1 (2.11)
1 -
The number of atoms of each element remains constant

‘&

anEt

I:l. = Pmiy Mm=1,...a; (2.12)

E’IHE:

I3 |

pu=1 by definitlon.

Finally, for each of the r reactlions written in the form

]
2 (@ — si)Xl=0; s=1,...r

=l
( au, b are the stoichiometric coefficients of reaction s), we
have the law of mass action

K &k @b 1
ps E : BeiVsi). — 2 : - X
p"s El ’ Vs= (asl Jl) ( 2 . 13 )

=i 1=1

Thus, altogether we have a—1+14r=a+4r equations for the k un-
knowns 8¢ . However, not all of the r equations of the law of
mass action are independent. For example, for a system of reac-
tions in the air, relating five substances (O, O, Ny N, NO) , con-
sisting of atoms of two elements (0O and N), the law of mass

™\
[9)Y
(0]

actlon glves flve relations:

%_Kpl. Eg[_sz. 505N=K’:.

%o, P &N, P ENo P
Enfo totn
—_— : — " = K .
Enofo P tnotn »

Upon dividing the third relation by the first, we obtain the
fourth, and upon dividing the third by the second, we find the
fifth. Thus, the law of mass actlon only gives three independent
relations.

In general, the number of independent relations is k - a.
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The total number of equations in the system is equal to the number
of unknowns, and the system has a unique solution [1]. If the
temperature and pressure are given, then the calculatlon reduces
to solving the nonlinear system of equations (2.11), (2.12),
(2.13). The accuracy of the calculation, in addition to other
factors, depends on the accuracy with which the equilibrium con-
stants are calculated. The calculation is a fairly complicated
task, and computers are used to obtain reliable results. Such
calculations were made for the alr and carbon dloxide for a wide
range of temperatures and pressures [2-8]. The results of the
calculations are shown in the form of tables which in addition to
the composition give the thermodynamic functions of gases. Tables in
[2-4 and 6] present the greatest detaill.

Tables in [6] differ from tables in [2-4] in that they cover a
greater parameter range (temperatures from 200 to 3-:10 °K and
densities from 10-6 to 30 times the normal density) and in that
the independent variables selected are the temperature and den-
sity rather than the temperature and pressure.

The ionization is considered by analogy with dissociation.
In addition, one also considers the condition of the conserva-
tion of charge in the system. The results of ionization calcu-
lations are also included in the table. Fig. 2.3 gives the
results of calculating equilibrium composition of the air for
various préssure values as a function of the temperature. These
relations may simultaneously serve as an illustration of the
role of different processes, depending on the variation of thermo-

dynamic parameters.

Ideal dissociating gas

For an equilibrium dissociation of diatomic gases, Lighthill
proposed a model in the form of a hypothetical gas [9] which
provides a good approximation of the behavior and thermodynamics
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The model gas was called an "ideal
operties are described by only three
s us to analyze the effect of disso-
lized form.

diatomic gas is described by the

equation A4, ¥ 2A, and obeys the law of mass action

2 D
na =‘_z_?4_ —ar
nA. Z‘.
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Using the expressions for mass concentrations (2.6), density

p=m(n.A+2u") (2.14)

and partition functions Z (1.24), (1.21), (1.18), (1.11), where

in the electron partition function we 1limit ourselves to the

ground state, one can write the law of mass action in the form
2

e S M _om "k (2.15)
1—ay 2’1‘. ("A +2RA.) E 2P n‘.

-2 ' T '
_ e lm (nmkr)s”(zr, )(l_e——}’) Z..A]
|4 2 k2 T/ »a A,

The expression in brackets has a dimension of density, and it
may be denoted by 04 .

P‘e_-fd-. (2.16)

The quantities #P¢ and Td=v%- are called the characteristilc
density and temperature., The characteristic temperature is a
constant for each real gas, and the characteristic density varies
wlth temperature. However, in a wide temperature range from
1000 to TO000°K, the changes in 0« are small. In any c?se,
they are much smaller than the change in the factor = 3 . For
example, for O2 the value of P4 changes from 123 to 170 g/cm3,
and for N2—— from 113 to 136 g/cm3. Therefore, p4 may be con-
veniently considered as a constant and may be set, for example,

3

for nitrogen to pg;=130 g/cm” and for oxygen to. Pa=150 g/cm3.

Using Eq. (2.16), it is easy to obtain the plots of equili-
brium dissociation versus temperature for various values of
density (Fig. 2.4). To fully describe the behavior of an ideal
dissoclating gas, we must obtain its equation of state and the
expression for the internal energy. The equation of state has
the form

p=kT (n,+n,) =-’;_T (14-a) (ny+2n,) _—_?fn— oT (14a,), (2.17)
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e

or, after introducing the characteristic pressure,

—_F —Dea P _ 2 T 4
Pd—-— 2 Pde D) Pa ?d T‘ ( +a’l)‘ (2 . 18)
E— b o
0 10 //
Figure 2.4 vVariation of mass I /7N7
concentration of atoms of an [ * ¥
ldeally dissoclating gas DJ //
pé s §7P) /71
The internal energy is taken in the form
(2.19)

3 1
E=— kT (n,+2n,)+— Dn,

under the assumption that the vibrational degrees of freedom of
molecules are halfway excited. The 3/2 factor in front of na,
and 2n4, 1in the expression (2.19) of course differs from

its exact value, which for O2 and N2 in the temperature range
from 2000 to 7000°K varies from 1.31 to 1.72, (the factor
multiplying nAchanges naturally very little). However, the
assumption used 1s acceptable, since the error thus resulting
is small as compared with the dissociatlion energy.

Passing to the specific energy per unit mass, we obtain

_E_% 5, D
e=— 2mT—I-2mu, (2.20)
and upon introducing the characteristic energy ef=-2 s Wwe
2m
finally find
e T

Egs. (2.16), (2.18), and (2.21) completely describe an ideal
dissoclating gas. Sometimes these relations are written taking
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as the units of temperature, pressure, density, and energy the
following characteristic parameters

-1
T.

; p=pT(14a,); e=3T4a,

The specific enthalpy, expressed in terms of these units, will be

h=e—|——p—=(4+a1)T t+a,
d (2.22)
and the specific entropy
S=3InT+a,(1—2Ina)—(1—a)In(1—a,)—(1—a,)In p-4const.

Approximate methods

The final result of an exact calculation of an equilibrium
state is presented in the form of tables. In applied calculations,
it is desirable to have simple methods of determining the equili-
brium state of a gas mixture, perhaps with lower accuracy but at
the same time with less labor and time. In addition, it 1s
advisable to obtain simple relations for the thermodynamic proper-

ties of a gas, which could be used in analytic solutions.
/72

—

The simplest methods for approximating thermodynamic functlons
are based on the use of the effective adiabatic exponent. Here in

relations between thermodynamic parameters, the adiabatic exponent
is replaced by a certain constant, which may be formally viewed as
an adiabatic exponent and actually corresponds to it for unexcited
internal degrees of freedom cof a gas. This quantity 1s defined

in various ways, depending on the processes in which the gas
participates, and the relations in which the quantity enters.
Thus, Hayes and Probstein [10] give three different definitions

of the effective adiabatic exponent. An example of one of them
which 1is convenienf in the study of shock waves 1s provided by

8l



FEREEEE T T

a quantity defined by the ratio

re=t (2.23)
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Figure 2.5. Effective adiabatic exponent «k._
as a function of the temperature and pressuPe
(based on tables from [2-4])

This quantity is convenient, in particular, in those cases when
p and p are used as thermodynamic parameters, since it enables

us to represent enthalpy in the form h=*;§%ff? . Kg depends

on both pressure and temperature (Fig. 2.5), but if one considers
a small range of gas parameters, then it may be viewed as a con-

stant average quantity that corresponds to given conditions.

To obtain the approximate analytic expressions for the thermo-
dynamic functions of the air, one generalizes the ideal dissocia-
ting gas to the case of a gas mixture [11] and ionization [12].
The partition functions of the form of (2.15) are replaced by
approximate expressions. It i1s assumed that the vibrational
degrees of freedom of molecules receive the energy 3/4 kT. If
one neglects the presence of nitrogen oxide and argon in the air,
then the equations of mass action can be solved for the degree of
dissocliation of oxygen and nitrogen. This makes it possible, by
analogy with an ideal dissociating gas, to obtain simple, although
somewhat involved, expressions for the thermodynamic functions of
a gas in the variables p and T. The introduction of arbitrary /73
constants makes it possible to obtain exact agreement at an
arbltrary point between the approximate expressions and those in
the tables. To obtain an explicit dependence on p and T, it is
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assumed that oxygen and nitrogen dissociate 1In sequence. 1In
the discussion of ionization, the air is considered to be a
single-component gas with the ionization energy equal to the
ionization energy of a gram-mole of the air. A similar calcula-
tion was made for CO, [13]. A better approximation may be ob-
tained by taking a larger number of terms in the partition
functions [14].

More accurate expressions for the thermodynamic properties of
pure components [15] and gas mixtures take into account the an-
harmonicity of vibrations, electronic excitation, simultaneous
dissociation of various components, formation of nitrogen oxide,
and a single ionization. For pure gases, these effects are
accounted for by the introduction of the corresponding partition
functions. The degrees of dissoclation and ionlzation are ex-
pressed in terms of partition functions, and the thermodynamic
functions— in terms of the degree of dissociation, pressure,
and temperature. In this, one assumes that dissociation is com-
pleted before the onset of ionization. On the basis of the
expressions obtained for gas components, one deduces the analytic
expressions for the composition and thermodynamic functions of
an arbitrary mixture of nitrogen, oxygen, and argon. The com-
position of a mixture is found by solving a relatively simple
system of equations by the method of successive approximations.
The thermodynamic functions are obtained in the form of algebraic
expressions in the degree of dissoclation, p, and T. Theilr
calculation is distinguished by its simplicity from the calcu-
lation in [14]. The ionization of a mixture, as in [12], is
considered for a single-component gas. At the same time, the
calculation is quite laborious, and digital computers must be
used. The computational error for a mixture does not exceed 1%.
The time expended is much shorter than in "exact" calculations.
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The availability of a standard program for calculations
according to this and the previous method permits us to use them
in numeric gas dynamic calculations.

Finally, in methods for the approximate calculation of an
equllibrium state, one approximates the equilibrium state tables.
The approximation may be accomplished by either selecting and
approximating an analytic expression depending on the parameters
selected for the problem [17,18,19] or by expanding the tabular
values of thermodynamic functions in series in a certain system
of functions.

To reduce the approximation error, it is more convenient not
to use the thermodynamic functions themselves, but rather their
ratios to expressions approximating the thermodynamic functions
with lower accuracy. Such an approximation using Legendre / T4
polynomials, dependent on 1lg p and the temperature, was made

for the functions Z&T1_ ,ng 2 [20] of the air, where Z(p, T)um

Z(p. Nu hm
and hM are taken from the approximate representation [12]. The
relatlve approximation error of this type does not exceed fractions
of 1%, even if one uses only six terms of a series in each of

the variables.

Nonequilibrium ldeal dissociating gas

The model of an 1deal dissoclating gas may be generalized to
the case of nonequilibrium dissociation [21]. Starting with the
elementary concepts on the reaction rates Freeman suggested the
following expression for the rate of dissociation of an ideal
dissociating gas

D 2.2l
rg=Cp(1—a,)T—se *T ( )

where C and s are some constants.
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The structure of the formula resembles the expression of
the law of mass action if the expression for the reactlon rate
constant (1.46) is written explicitly. Since in the state of
equilibrium we have (2.16), the rate of the reverse recombina-

tion reaction is
CT—s _ 9o
rp= p2ay.

Py (2.25)

The rate of the reverse reaction depends on the concentration
of the atomic component, and just as in any reaction that goes
through triple collisions, it is proportional to the square of
the density.

From Egs. (2.24) and (2.25) we obtain the following for the

rate of dissociation

ﬂ:CPT—s[(l__al) e *T_ P af]_ (2.26)
dt Pd
The entire kinetics of the nonequilibrium process is determined

Jo

by the parameters C and s (in addition to the constants D and
Pd; that characterize an ideal gas). Their values should be
selected based on the reaction rates for real gases. It will

be noted that (CPT“’)_l has the dimension of time and it may be viewed

as the characteristic time of the process.

Equations of motion of a gas

The equations of gas dynamics taking into account the non-
equlilibrium processes can be written under the assumption that
a local thermodynamic equilibrium exists for each degree of
freedom. Thus, for each degree of freedom one can introduce
its temperature, energy, entropy, etc. The system of hydro-
dynamic, thermodynamic, and kinetic equations describes the
motlion of a gas and the process of the establishment of equili-
brium between individual degrees of freedom. In those cases
when there is no equilibrium for some degrees of freedom class
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(for example, vibrational), the class is subdivided into sub-
classes. New degrees of freedom are introduced which satisfy the
assumptidns about the thermodynamic equilibrium, for example the
relaxation between the levels. Thus, the principal formulation
of the problem remains unchanged.

Let us make a short derivation of the gas dynamic equations
of continuity, momentum, and energy for a relaxing gas, follow-
ing basically the exposition in [22] (see also [23-26]).

It will be assumed that a gas consists of n components,
particirating in r transformations. The number of components
includes the degrees of freedom that are 1n the state of quasi-
equilibrium. Thus, one can introduce for each such degree of
freedom the temperature, enthalpy, and other thermodynamic para-
meters. It willl also be assumed that there are no mass forces.
We recall that at each point of space occupled by a gas, the
velocity 2& of component k may in general differ from the mean
local velocity of the center of mass

- ‘.n
v=2i:'- s where P=2 Px-
[

[]

To deduce the equation of continulty we consider in the space
an arbitrary stationary volume V bounded by a fixed surface S
[22]. The rate of change of the mass of component k in the
volume
4 =( %
dt &p,,dV-{S ot uid
v
is equal to the sum of the flux of the mass of component k enter-
Ing volume V through the surface, and the rate of the formation
of k due to processes inside V:

5%&dv=_§ p,,Tv’,,ETS‘—I-gi"u-’ldV' (2.27)

Here 4$§ is the vector surface element whose positive
direction is to the outside; vail; 1s the rate of formation of
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the component k per unit volume due to process J.

Vei 1s defined as the ratio of Py and the accepted express-
ion for JJ' Applying Gauss' Theorem to the surface integral in
Eq. (2.27), we obtain the equation of continuity for component

k in a differential form /76
- L] (2.28)
%"‘L=—dlv PxTy -+ 2».,1,;k=1. 2...n.
7-1-

Since the total mass 1s conserved as a result of all internal
processes, we obtain upon summing over k, the equation of contin-
uity in the ordinary form

o -
?——dlvp'v. (2.29)
If one introduces the "diffusive flux" of substance k rela-
tive to the center of mass Jy=g,(vsi—0) - Ba. (2.28) can be
written in the final form
L4
b= —div o —div Iy Y lsi k=1, 2...m. (2.30)
Jal

To deduce the momentum equations we apply d'Alembert's
principle to the separated gas volume. The principle asserts
that at each instant of motion all forces applied to the system,
including the force of inertia, mutually balance each other

J wpaV = [ B,48,
s

where w© is the acceleration of a gas element, and
Pn 1s the surface force vector directed along the outside nor-
mal. The equation can be transformed [23] to the form

dv

1
ar -—T leP.

where the vector divergence of the tensor P 1s defined by

oP. 0P, P,
divP=—% y 4. z
ox T oy + oz
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and 1lts 1 component is

(@lv P)=27xt 4 220 | 9P
Tensor P 1s considered symmetric (Pu Pn) . Decomposing tensor
P iIn two parts: statlic pressure p multiplied by the unit tensor
U, and the viscous stress tensor 11 ,

P=—pU+m, (2.31)
/17

we find the momentum equation in the vector form

SR NPT TE D :
= — - div U4 AIVIL (2.32)

Thus the form of the momentum equation does not differ from

the equatlons of a nonrelaxing gas.

To derive the energy equation consider a certaln gas volume.
The change of energy in the volume is determined by the energy
flux through its surface

A e D LR e

dt

where Z 1s the energy flux through a unit area per unit time.

Applying Gauss' Theorem to the volume, we obtain the
energy equation 1n differential form

dp(—;—;z;i-e) -
% = —divJ,. (2.33)

The energy flux conslists of the convective term P,(%:v.’+¢); ,» the
mechanical work done to the system Po > and the "heat flux" -
the term Jg including all other energy forms

) (% '62+¢)

ot

——an o (_;;z+e);_p;+7,].
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Here the 1 component of Pv 1is EPu‘Un

Using the representation (2.31) and introducing enthalpy
h=e+ £ , we bring the energy equation to its final form
P

1 -
09(’; 02+e)

e 1 - - -
Fy — —div{pfu (—2—'02+Iz)]+dlv (I-o0)—divJ/,

It will be noted that using the relation

p da _ 93 —l—dlvap';,
dt dt . .

which follows from Eq. (2.29), and the expression

%=—‘;:—+5grada, /78
we can write Egs. (2.28) and (2.33) in the form o
f‘;‘:&+p,,div5=2'vuh—div7; (2.34)
J=]
and d(%'62+e)9 -~ - e
dt___=_divpv+diV(H"U)—diV-’q° (2.35)

Egs.(2.34), (2.32), and (2.35) form the system of gas dynamic
equations.

The speeific form of vy Jj, .7,,, 1, jq depends on the formulation
of the problem and on the processes considered. It is clear that
the corresponding equations must be added to the system of the
gas dynamic equations.

Below the diffusion, viscosity, and heat conduction pro-
cesses will only be considered in Chapter 5 which is devoted
to the boundary layer, and the energy flow from the outside in
the form of radiation only in Chapter 6. In the absence of
these processes the equations of motion simplify and assume the
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following form

r
Bt divo= Y ls k=1 2. m
J

(2.36a)

bz ___1 9p.
daf p ox '
dt p Op
dw ___19p .
. p oz’

2 4+ 92 4 w2

op (o xR .
] (F ) F O

where u, v, w are the components of the velocity v

To the gas dynamic equations we must add the equations that

descrlbe the internal processes and thermodynamic properties
of a gas.

In the following two chapters we shall only consider the

chemical reactions and the excitation of the vibrational degrees
of freedom of a gas.

To set up the equations of chemical kinetics we must first
of all know the mechanism of chemical reactions. After a cer-
tain mechanism is established one writes down the expressions
for the rates of formation of the components /5 1in each of
r reactions. For example, if the continulty equation is taken
in the form (2.36a) and the molar-volume concentrations are
used for reaction rates, then

=M, (br—a,); J,=k,ﬁ[X,]a'-—k, ﬁ[X,]", (2.37)

I=1 I=1
where ay, ba, ks, B, depend on j(j=1..r)
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One can write the continuity equations by also using other
expressions for the concentration

[X)=2t =P Im T p .
Ny “.No T Np [
C,=—[Xd =L.£'- °
] M op ' _ (2.38)
0;=-g‘-=c,M,= [X:] M, :
4 (4
g=Xd e _ @ & m
;[!Xd e M ed M 9, I
n; Po ﬁ.
V=t ==p =,
= » & %
n
n=Ny[X]=1,p—. A
3

Then the left-hand side of Eq. (2.36a) may be put in one of the
followlng forms

%t oudivom M, (24X, atv v)=
My [ dny N [ dh & e \
No( at +”“d1”)—”( PR EM" at )
R ]

=Mkp dcy =p dak _-—-.p( Mk )ﬁl‘.

dt dt m, ) at’
. >, Myna

where ”=2”*" M=- n ; however, the right-hand side will

involve an 'expression for the reaction rate (2.37), transformed

to the corresponding varlables. It will be noted that the concen-

trations o o Y ,divided by the density, permit us to simplify
the equations.

To relate #uP T,h M to the concentrations and to each
other, one uses the thermodynamic relations:

p=N =NV _ or NV x]=eRT §V ¢,
X=X RT,E = P
PRT S P =R . (2.39a)
‘2 M, ZM‘E‘ Td,, ‘ETI’
[

- pL T -~
h= hial=2 Il,ci= ! =E Ma"
. ‘ Mg, l e

b
‘

4

N
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where

hy=c,T+ _z:—+ekl+h;=cpr+ekl+h;;

(2.40)
ki 1is the specific enthalpy of formation.
h=hM, = plT+eu+llt.
hi=h Mh eu—-e,,M,, ‘Zl= xR . (2'41)

Here-cv refers to the heat capacity at constant volume of a

gas with unexcilited vibrational degrees of freedom. For the relaxa-
tlion of the vibrational degrees of freedom of energy eyip One

must use the corresponding relaxation equations (see Eq. (1.75)).
For example, In the simplest case the relaxation equation may be
obtained by analogy with Eq. (2.30). Using the expression for

the specific energy, divided by the density, we obtaln the re~
laxation equation in the simple form

deyih _ eD—e
dt =T o . (2.42)

Finally, one can use the following relations that may be viewed
as Dalton's law: p==2 M, [X,]='_)J_02Mln,;.

(2.43)
Mo Pmt T
as well as the relations giving the molecular weilght:
> M [x) 2 nM; ;7_’, 1M 2 Mie,
[

;[X,] ;ﬂt ?11 ;01 ,Z e

The last group of relations expresses the equations of
material balance (2.12)

‘2 1ty ( 5.l 5 )/—8}'
) = Dt =1,...a. .
lznnﬁl Prii @

All these relations in general overdetermine the system and in
specific cases only some of them are used in solving a problem.
Thus, with the concentration variables chosen the total number

‘of equations of chemical kinetics, equations of material balance,

ane the - “-essary equations from the group of (2.43), (2.4%4)
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must equal the number of components in the system.

The present system of differentlal equations is close in
form to the system of equations for a gas that does not undergo
any transformations. Therefore the transition to various coordi-
nate systems is possible by means of the transformations ob-
tained for classical gas dynamics (see for example [23]). Here
for illustration we shall write the equations in the natural
coordinates for the two-dimensional case. It will be noted
that in steady state motion

da -
——=ggrada
dt g

and Egs. (2.36a), (2.36c) may be written as

div p,'z?=2v.,1,;
. 1.1 (2.46)
v grad (? 'vz+h)==0.
In the natural coordinates s, n, where s is the coordinate
along a streamline and n is perpendicular to it, the equations
of adiabatic flow taking into account chemical reactions and
relaxation assume the following forms [27].

The equation of continuity 2
1 ap+1 au_l__ + _sin$ —0. (2.47)

p u 0s
Here p is the density; u is the stream veloclity; ¢ 1s the
angle that the streamline makes with the x axis; y 1s the coordin-
ate perpendicular to the x axis; J = 0 for the two-dimensional
flow and J = 1 for axisymmetric flow.

The momentum equations are

Os ___ Op .,

P s = " as (2.48)
2 0% _ 0P

pa o  on (2.49)
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The energy equation is

Oh .y, 0m (2.50) /82
os tu ds 0.

The equation of state for each component (2.39a) and for a

mixture 1is
p o M,

The equation of continuity for each component 1is

dar N i
pu 2 _,Elmh' (2.51)

To the system we may add the relation ;a,,=1 and the

equation of material balance. For example, for the air
(21% 0, and T79% N2 by volume)

1

1 1
16 0T g%, T g %0 o

1 1 1
14O 14 % F g %o

79

Finally, to the system we must add the caloric equation of
state (2.40) and the equations of vibrational relaxation (2.42),
ionization, and cons=rvation of charge (if these processes are
considered).

2.2 General properties of the flow of a relaxing gas

Relative values of the characterlistic
times for various processes

Each of the relaxation processes, described by the equations
of the form (1.35), (1.57), occurs at a certain characteristic
rate which depends on the physical conditions in which the process
takes place (temperature, pressure, and concentration of compo-
nents). This rate may be compared with the characteristic re-
laxation time t. If the relaxation times for various processes
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differ widely, then one can distinguish regions in which certain
processes are dominant, and others occur much slower. The slow
processes are sald to be "frozen". The opposite case involves
processes for which the relaxation times are very short so

that local equilibrium is established almost instantaneously.
Such processes are called equilibrium processes.

The subdivision into reglons of flow according to the equi-
librium and frozen processes 1s convenient in approximate calcu-
lations and 1s widely used in practice. As a criterion for con-
sldering or neglecting the relaxation processes we use the
ratio of the characteristic time that a gas particle spends in
a glven flow region, t = L/v, where L is the characteristic
length, and v 1s the characteristic flow speed, to the character-
i1stic time of the relaxation process.¥

The smaller the ratio, the greater the accuracy with which
the process may be considered frozenj; conversely, the larger the
ratio, the closer 1s the flow to an equilibrium flow.

Thus, the effect of relaxation processes depends not only
on the thermodynamic parameters of the flow, such as the density,
temperature, gas composition, but also on the dimensions of the
flow region L. and the flow speed v.

Speed of sound

To the two limiting cases of the flow of a relaxing gas
there correspond two speeds of sound: "frozen" one, Bps and
"equilibrium" one, ag- The:«firdt correspondd ‘to the propagation
of sound, which is not accompaniled by any changes in the energy
of the internal degrees of freedom of the molecules. Such, for

¥ Karman [28] calls this ratlio the first characteristic
number.
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example, 1s the propagation in a gas of a vibrational process at
a very high frequency when the iInternal degrees of freedom do

not have enough time to exchange energy with the active degrees
during the vibration pericd T (the ratio 7?:»1 Y. Conversely
if the disturbances propagate at a low frequency (%;<<1) the
exchange of energy of Iinternal degrees of freedom follows the
change in the external conditions and the process occurs quasi-
statically and reversibly.

The frozen speed of sound 1s defined as (f%)&q,
where the derivative 1s taken at constant gas composition and
constant entropy. The equilibrium speed of sound is defined as
aﬁ==G%)Sm¢ » where the derivative is taken at constant
entropy and equilibrium composition of the gas. These relations
may be written in terms of the derivatives of frozen h or, respec-
tively, of the equilibrium % entropy of the gas with respect to

the density and pressure

i __ & '
a=— (2.52)
af-_-—__ _h-' -

B,—1lp (2.53)

For example, for an ideal dissociating gas the frozen speed / 8L
of sound 1is defined as

2_4+q ‘
af——-——s - (1+QI)RT.0 (2.5“’)

and the equilibrium speed of sound as
2
a(1—a)(1+25 )+ @ +3a—ad) ()

g (l—a)+3 (2'—"11)(—'7.5)2

Fig. 2.6 shows the plot of the ratio (as/a.)? for an ideal
dissoclating gas modeling oxygen [29].

ai= RT. (2.55)

In general the speed of sound in a relaxing gas depends on
the frequency and varies between the equilibrium and frozen

99




. speeds of sound. Thus, the
G%f 1 . dispersion of sound occurs
LYJ in a relaxing gas. In addi-

13
/9<2X; 4 . tion, the sound signal pro-

(44 //// \ \ pagates with damping that

y A

p N\ also depends on the fre-

//{/// \\}5 \\\ \\. quency. Also: the frozen
S

W, 2 3 4 5 K705 speed of sound 1s greater

than its equilibrium value
Figure 2.6. Ratio of
the speeds of sound versus [(30]. 1In magnitude these

the temperature for "oxygen- two speeds do not differ

1ike" 1deal dissoclating gas:
very much, however, the

1 - for p = 0.01 kG/cm?;
2 - forp = 0.1 kG/gmz; difference 1s of great
3 _ gg; g - %okgé;?mé theoretical importance.

The perturbations introduced in the flow first always propa-
gate at the frozen speed of sound since for an exchange of the
energy of internal degrees of freedom to occur 1t 1s necessary to
walt a certalin time on the order of the relaxation time. During
that time the speed of the propagation of disturbances gradually
changes and 1In the l1imit becomes equal to the equlllbrium speed
of sound. This leads to interesting and fairly complicated
phenomena that occur due to the propagation of disturbances intro-
duced in a moving gas [31,32].

The lesser the role of the internal degrees of freedom of /85
the molecules, the smaller will be the difference between the
frozen and the equllibrium speeds of sound. If the effect of the
internal degrees 1is completely nonexistent, the difference be-
tween the two speeds of sound vanishes. Thus we arrive at a
single speed of sound that plays such an important role in
clagslcal gas dynamics.
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Variation of entropy

The equations of motion of a relaxing gas were obtained under
the assumption that the gas may be represented by a set of
subsystems in a state close to equilibrium. For equilibrium
systems 1t 1s not difficult to obtalin the expression for the ent-
ropy, and the variations of the entropy for each of the sub-
systems may be written simply as ng:%%- , where dQ; 1is the
amount of hga@rreceivedwby the subsystem.

If relaxation processes occur in a nonequilibrium system, then the
entropy of the system increases, even if the system does not
exchange energy with the external medium.

This will be shown using an example of a system consisting
of two quasl-equilibrium subsystems. Suppose that the temperature
of one of the subsystems 1is Tl’ and of the second T2. If the
first subsystem releases heat in the amount 4Q, and the other
acquires this amount of heat, then the change in the entropy of

the system will be

25— % _so(L_1).

T, T, (2.56)

Since T1>T2, the value of dS will be positive. The relaxa-

tion processes result in a dissipation of mechanical energy also
in the general case. At the same time, one can see that the

entropy of the individual subsystems may either increase or de-
ecrease in the process of relaxation. If the translational de-
grees of freedom of a gas are taken as one of the subsystems, and
one of the internal degrees of freedom is taken as the other,
then during the excitation of the internal degrees of freedom the
entropy corresponding to the translational degrees of freedom
wlll decrease. If, in addition, afterwards the internal degree
ol freedom of a gas element becomes frozen, then the entropy

of the translational degrees of freedom remains reduced in 1ts
entire subsequer.t motion. This phenomenon may lead to an
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occurrence of relaxation entropy layers.

The change in the total entropy of a gas may be compared
with the value of the entropy itself.® 71r these changes are
relatively small, then they can be neglected and the entropy of
the flow may be considered constant [33].

The variations of entropy, due to an exchange of energy with /8
the internal degrees of freedom, are absent in the two limiting
cases of flow: equilibrium and frozen. In the first case the
temperatures of the equilibrium subsystems are always equal and
the expression in (2.56) is zero. In the second case the inter-
nal degrees of freedom are completely excluded from the exchange.

Energy parameter

The ratio of the energy Q, participating in the exchange
(in particular, of the heat of reaction), to the enthalpy of
the gas, h, 1s still another parameter that characterizes flows
with an exchange of the energies of internal degrees of freedom.
In foreign literature [28] this parameter 1s referred to as the
so-called second characteristic number, equal to -f%f% . De-
pending on the problem at hand the energy parametef’may be con-
structed using elther the total entropy or the local value of

entropy, or the entropy of the active degrees of freedom.

If the ratio Q/h 1s low, then one can neglect the varia-
tion in the energy of the active degrees of freedom due to
nonequillbrium processes. Then one can exclude the effect of
the 1nertial degrees of freedom on the active ones and the
relaxation of the inertial degrees of freedom may be viewed

¥ We recall that according to Nernst's theorem one is
able to determine the absolute value of the entropy.
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in a given field of the thermo-gas dynamic parameters determined
by the active degrees of freedom.

2.3 Equations of motion in the characteristic form

To calculate the flows in a supersonic region one often uses
the method of characteristics, which may be applied to the flows
of a relaxing gas [27, 34, 35]. We shall 1limit ourselves to con-
sidering the equations of the characteristics only in the two-di-
mensional axisymmetric cases ¥ in application to Egs. (2.47) —
(2.51).

Using Eqs. (2.48), (2.50), and (2.39a), one can rewrite
Eq. (2.47) in the form

P%zg—ﬁ(MZ—'l;+%+js:1&=mZ(l— ) e (2.57)
where E,:?c,c,,z . M=ula; 1is the frozen Mach number;
o 4
G- )™t Sor (2.58)
Eqs. (2.57) and (2.58) form a system of gquasilinear partial
differential equations with respect to p and % . To them
one must add Eqs. (2.51) and the algebraic relations for h,

p, and other variables. For u>a? the system is hyperbolic and

its characteristic directions are given by

[}
o= =y ————. (2.59)

VM1

The characteristic equations have the form (see also [34]):

9 (M2—1n?ap . Jsin & _ dc;
e L L

i

98 M2—1"2ap . [ysing N/
6s2+ pu? dsg+smy' Y —z M=

i

(2.60)

They involve derivatives with respect to just one variable: s, or

S,- In this respect Egs. (2.48) and (2.51), which are also
characteristic (the characteristics are streamlines), are

¥  For equilibrium flows the method of characteristics is
presented, for example, in the book by J. D. Hayes and
R. F. Probstein [10], p. 330.
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analogous to them.

The variation of concentration may also be calculated along
streamlines in accordance with the relaxation equations (2.51).

In the x, y coordinates the streamlines are defined by

dy. -
L g (2.61)

and the Mach lines

2y
ol ALE 20 (2.62)

To these equations, we must add the equations describing the
composition and thermodynamics of a gas.

2.4 Linearization of the equation

Sometimes one can consider the linearized system of equations,
which often gilves useful information on nonequllibrium gas flows,
without applying complicated computational methods [36—41,26].

We shall show how one can obtain a linearized system of
equations from the general equations of motion of a gas with
internal degrees of freedom. As a basis, we shall take System
(2.36) and add the equation for an arbitrary relaxing parameter
g that characterizes the internal degree of freedom

d L. P9 (2.63)

dt ]
where 6 is a gquantity that characterizes the reaction time. The
smaller 6, the faster will be the reaction.

If a gas 1s in equilibrium, dg/dt is zero, and Eq. (2.63)
determines the state of equilibrium, then

- (2.64)
Lp, p, ¢)=0,

whence -
7=9( ¢)- (2.65)

If o= 0, then Eq. (2.63) implies L(p,p.9)=0 and the gas is in
local equilibrium. This i1s the case of the equilibrium flow.
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If 0+=, the equation passes into g4=const 5 the flow is frozen.

We shall assume that the linerarization is done relative to / 88
the main floWw u=ua., o=w=0, p=pe., k=ha, g=g. . The perturbations of
the main flow will be denoted by using a bar above the symbols.
Substituting the linearized wvariables in the system, we obtaln a
system of equations for the perturbations

fou’  ov' | ow op'
Qu’  Ouv Ow 2L o .
Neri aya+ 03)+”” ax (2.66)
u’ 2’
Poollon 5 + 0 =
ov’ ap’
Potten 5=+ 5 =0 (2.67)
dw’  Op'
Pootion 3o + 5 =&
ou’ ok’
dq’ 1 ’ r N .
dh' =hp dp' +h, o'+ ke @', (2.70)

where the indices denote derivatives with respect to the
corresponding variables.

’

Now let us introduce ¢, that corresponds to local equili-

brium
Lo 7 +L, o +Lg g =0. (2.71)
With the aid of this equation, we can write the relaxation
equation (2.63) in the form
%9 _ _T—q (2.72)

s
*® 9x T ’

where oo = ™ is the relaxation time of a nonequilibrium

L,

process.

If several reactions are possible in a system, then the
system may also be brought to the equations of the form similar
to (2.72) [42-447. The equation of the vibrational relaxation
can be written directly in the form (2.72).

q can be determined from Eq. (2.65), whose differential form
is

dg’ =g, 4P + g, 4o’ - (2.73)
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Egs. (2.66 - 2.70), (2.72), (2.73) form a complete system of
equations in eight unknowns. The system may be reduced to a
single equation. After some transformations, using the expressions
for the equilibrium and frozen speeds of sound, and the correspond-

ing numbers~3m==lﬁL, o = f»  we obtain the equation
aeon ajm
0 ov’ ow’
K ox [(l M’”) 0x +—+ oz + (2.74)
2 yOu' W 0w ] | R

[(I—M“") ox + oy + oz =0,

where . Ryt / 89
hPaw+h'ao¢—P.

Applying the rot operator to the linearized momentum equation
Pooldpo da' +gradp =0
we obtain ﬁlxmt?)=o . Inasmuch as i%‘=" _i_, the vorticity
X
of a liquid element remains constant. This is an important
property of linearized flows. If in an unperturbed flow there
is no vorticilty, the latter will also be absent in the entire
flow. Consequently, one can introduce a perturbation potentlal

29 de dy
so that A .4 4 -
? B=x ' YT dy",dz

Now Eq. (2.74) becomes an equation for the potential

9 R L .
Koz [(I"MI“) oxz T+ 0y2 + 022]+ (2.75)
_m2 (P O% 9%]
+[(1 M) —= e 6y2 +622] 0.

Eq. (2.75) becomes the Prandtl-Glauert equation for the
equilibrium flow at K = 0, 1.e. at 1 = 0. In the second
limiting case, when K = » the equation also changes into the
Prandtl-Glauert equation in which one uses the frozen speed of

sound.

For intermediate values of K, the characteristics of the
equation are determined by terms involving derivatives of third
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order. In particular, for two-dimensional flows (%%1=® the
, /4
characteristiss are given by the equations y = const
a9
and -~ -—:i:v MIL—1
elliptic or hyperbolic type, depending on whether M,. is smaller

Correspondingly, Eq. (2.62) is either of

or greater than 1. The type of equation is preserved for all K
that differ from zero. However, for K = 0 it is possible for
the type of the equation to change, since in this case the
equation may be of the elliptic or hyperbolic type depending

on the ratio of M. to unity. Cases are possible when one of
the terms Mes, Mia is greater than unity, and the other smaller.
In these cases, the type of the equation changes discontinuously
at k = 0.
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CHAPTER 3

NONEQUILIBRIUM ONE~DIMENSIONAL FLOWS

3.1 Normal shock wave

One-dimensional flows are the simplest case for which one can / 92
study and estimate the effect of nonequilibrium processes. A great
role In the study of the relaxation processes and thelr effect
on the flow characteristics is played by the calculations of normal
shock waves. This 1s explained, on one hand, by the fact that to
obtain experimental data on reaction rates at hlgh temperatures
we use shock tubes, and therefore the calculatlions of shock waves
are of direct interest in the estimation and verification of the
role of various reacticns from the point of vliew of the compari-
son of computational results and experiment. On the other hand,
in the case of flows over blunt bodies the relaxation phenomena
are manifested primarily when a gas flows through a front shock
wave and the calculations of normal shock waves may give important
information on the role of relaxation.

The results obtained for normal shock waves may be generalized
directly to obligque shock waves. (For this, one resolves the
velocity of the flow incident on an obligue shock wave into com-
ponents that are normal and tangential to the wave. The normal
component changes during the transition through the wave, as in
a normal shock wave, and the tangential component remains un-
changed).

A shock wave 1s characterized by a sharp variation of the
state of thermodynamic equilibrium of a gas. When a moving gas
element passes through a shock wave, as a result of molecular
collisions the energy of translatlonal motion is transformed
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into thermal energy, and after relaxation takes place, the gas
achleves a new state of equilibrium. When the wave has high
intensity, the heating of the gas may be sufficlent for the
relaxatlion processes to begin. This 1s assoclated with a change
of the energy of the inert degrees of freedom of the gas.

The relaxation processes determine the structure of a shock Lgi_
wave, 1.e., the transitional zone between two equilibrium states.
The rate of relaxation of different degrees of freedom 1s diverse
since the rate of energy exchange in collisions for different
processes differs by a large factor. Thus, to establish equili-
brium in translational and rotational degrees, one needs from 3
to 5 molecular collisions. To establish equilibrium in vibration-
al degrees of freedom, one needs on the order of 1,000 collisions,
and to establish chemical and ionic equilibrium the number of the
required collisions 1s many times greater. The difference between
the rates at which equilibrium is established in different pro-
cesses results in a sltuation where a quasi-equilibrium state is
rapldly established in certaln degrees of freedom, and then the
much slower process occurs of the transition toc full thermodyna-

mic equilibrium.

Thus, in the case of a complete spatial separation of
different processes the structure of a shock wave is as follows.
In the narrow front whose extension 1s on the order of several
free paths, the equilibrium is established 1n the translational
and rotational degrees of freedom. A sharp discontinuilty in the
temperature, pressure, and density exists. Then the vibratiocnal
degrees of freedom become excited, and, as a result, there is a
drop in the temperature. In the relaxation process, the degrees
of freedom that were excited earlier remain in quasi-equilibrium,
but thelr temperatures change and become closer as a full thermo-
dynamic equilibrium is approached. The establishment of full
equllibrium occurs asymptotically, and the width of the shock wave
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is determined by the distance at which deviations from the state
of final equilibrium reach a certaln small fraction of their
equlilibrium wvalues.

The feaslibillity of separating the excitation processes for
different degrees of freedom vanishes as the temperature behind
a shock wave Iincreases, since at high temperatures the character-
istic times for different processes become comparable. Estimates
show that the feasibility of process separation is retained until
the flow incident on the shock wave in the alr reaches approxi-
mately the speed of 7 km/sec (it is also possible to use one of
the methods in which dissociation is coupled to vibrations). How-
ever, experiments were performed [1] that show that, when the M
number in front of & shock wave in oxygen ranges from 10 to 14,
vibrations interact strongly with the excitation of the trans-
lational and rotational degrees of freedom, and for M>1l4, disso-
clations also participate in the coupling.

We are particularly interested in the structure of the discon-
tinuity, which is determined by the relaxation of the internal
degrees of freedom of a gas, and a great deal of attention is
given to the vibration and chemical nonequilibrium processes.

Thus, the distances are measured from a somewhat Ilndeterminate
front of the discontinulty 1in the translational temperatures. / 94

———

This, however, does not introduce substantlial errors, since the
basic processes that are of interest occur at distances of many
tens and hundreds of free paths. In such a formulation, one
neglects diffusion, viscosity, and heat conductivity, since
these processes are assocliated with large gradients of hydro-
dynamic quantities, existing mainly in the discontinuity of
translational temperatures.




Approximate calculation of the structure of shock waves

The flow in a shock wave is described by the equation of
continulty, momentum and energy

P11 == Poolleos (3.1)

p1+91u¥=p¢° ‘l’Pcouzu; (3.2)

2

uy "3»
Mt —=ho +—.
1+ t (3.3)
To these equations, one should add the thermodynamic relations,
generally written considering the internal changes in a gas.

Here the veloclity of the flow 1s relative to a system asso-
clated with the front of a shock wave; u, p, p, h are the speed,
pressure, density, and specific enthalpy of a gas. The sub-
script "1" denotes the state behind the shock wave, and the
subscript "oo" denotes the equilibrium state In front of a

shock wave.
P

If there 1s no relaxation, then for an ideal gas h==l__lP
and one can express the flow parameters behind a shock wave in
terms of the parameters in front of the shock wave, the My
number of the shock wave (Mw==%?—) and the adiabatic

exponent «:

2 Mf,—l .
lll"‘uoo(l"—x_*_l Mi ), (3.14)
_ c+ DMy,
e oM 2 (3.5)
= ( 2% 2__1.—1)
pl L] t1 o0 1 . (3.6)

In particular, if M.>»1 , then Egs. (3.4—3.6) become:

a4y =1 * =1 (3.7)
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+

; (3.8)

»
|
-

~
1

Pym= P -2 M2, (3.9) £22

Clearly, as M_, 1increases the values of u, and Py approach cer-
tain limits, and Py (and Tl) increase without 1imit (strong
shock wave).

The 1limit in case of a strong wave 1Is obtained from Eqs.

(3.1—3.3) when one may neglect the pressure and enthflpy in
front of a shock wave as compared wlth Ptiz, and fgl .
The state of a gas may be conveniently represented in the

p, V = % coordinates: pressure, specific volume. Passing in

Eqs. (3.1—3.3) to the specific volume, we obtain the relations

Van_nco.

Vl— ay ’ (3-10)
2 2 P1 P e
o=Va 3, (3.11)
2 1,2 P17 P
uI_VIV——”—Vx ’ (3.12)

which follow from the mechanical conservation laws alone, and

,,1_;,,‘,;-_;_ (Py— Poo) Vo V). (3.13)

The latter relaticn is called the shock adiabate. Since the
state in front of a shock wave is assumed to be known, Eq. (3.11)

in the p, V plane results in a straight line that passes through
the point pw, V. (Fig. 3.1).
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Using the caloric equation
of state, the enthalpy of thermo-
dynamically equilibrium states
may be represented in the form of
a function of p, V, and the shock
adiabate may alsoc be represented

in the p,V plane. In contrast
with the straight line described

Figure 3.1 Representation by Eq. (3.11), representing the

of states in a shock wave
in the p,V plane: entire sequence of states of a
% ~ :Eggigggiiégge(3’ll); gas element in a shock wave, the
shock adlabate represents only
the equilibrium states. The
final equilibrium state of a gas 1s determined by the point of
intersection of a shock adiabate and the straight line (3.11)
(see Fig. 3.1). In the p,V plane, the transition from the ini-
tial to the final state corresponds to the transition from point

Pw 5 Vo to point p,, V1 along the straight line (3.11).

For an ideal gas, 1t 1is easy to obtaln the equation of a shock
adiabate in explicit form. Substituting the expression for the
enthalpy of an ideal gas h=H4T==;ETPV in Eq. (3.13)

=P+ + 1) Py
T G+ DA+ —Dp, (3.14)

4%
Vm

As the Intensity of a shock wave increases, the ratio of specific
volumes approaches a constant [see also (3.8)].

Vi _'&——l
(), =% (3.15)

and, consequently, the shock adiabate in the p,V plane is bounded
on the left by an asymptote which depends on the adilabatic

exponent of the gas, k. In particular, for a monocatomic gas
X =—%—-we obtain (Vllp =7 s for a diatomic gas x = %— we get

(ZL) =L » and in general for x =+1 we get [V, G-
Vel 6 (Vw)r
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Taking a derivative with respect to x of (3.14) one can show
that at constant x and unchanged initial state in front of the
wave the shock adiabate, corresponding to larger «k, lies entirely
for V<V, to the right of the shock adiabate corresponding to
the smaller «.

Neglecting the significant changes in the density in a
shock wave, the pressure and enthalpy at large compressions depend
relatively little on the compression. Using Egs. (3.1) - (3.3),
we can obtailn

(3.16)

1 2 Vi \2
Ai=—ugpil— (LY.
2 [ (Vm)] (3.17)
For example, if the gas 1s diatomic, then

(7)) =Pmu3°(l_%); (1), =~—2"°—(1—-—3%). / 97

and if the gas 1s monoatomic
2

ll’ &
(P === (1= (h)p =—o (1=

In those cases when the energy of the internal degrees
changes, and the gas undergoes physico-chemical changes, it is
not possible to represent the equation of a shock adiabate
in expliclt form relative to p and V. The curve representing the
shock adiabate, in those cases will have & more complicated form
as compared with the one shown in Fig. 3.1.

However, one ocar obtain a qualitative idea of the changes
in a shock wave on the basis of fairly simple concepts. Let us
imagine that the region of relaxation behind a shock wave is sub-
divided into a number of zones corresponding to different relaxa-
tion processes, and at the end of each zZone a thermodynamic
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t‘t(t!
! equilibrium is successively estab-
lished in each of the processes,
at the same time as the pro-

cesses that are still unexcited
remain frozen [2,3]. Thus, after
the excltation of the transla-

Flgure 3.2 Variation of tional and rotaticnal degrees of
the state in a shock wave
wlth relaxation for mu<w .

——t

v

freedom the gas behaves as a
monoatomic gas. Then upon the
excltation of the vibrational
degrees of freedom 1t behaves
like a multiatomic gas. Then, after complete dissociation (and
ionization), it behaves like a monoatomic gas again. This
suggests that the state of a gas after passing each of the zones
may be found on shock adiabates corresponding to different «.

In particular, this at once Implies that the degree of compression
Increases when the vibrational degrees of freedom behind a shock
wave become excilted, and the degree of compression may decrease
during dissoclation.

Suppose that an equllibrium state to which there corresponds
a certaln « 1s established after a certaln process. This state
1s represented by a polnt of intersection of a stralight linel
(Fig. 3.2) by a shock adiabate constructed for this value of % .
If in the process of relaxatlon that follows thils state x in-
creases, then the point representing the successlve state of
equllibrium moves along the straight line 1-2 to the right and
below the shock adiabate corresponding to the new value of x .
(see Figure 3.2). If k decreases, then the image point moves to
the left and upward. Strictly speaking, in this case it is
necessary to consider the varlation of the energy of internal
degrees of freedom of a gas, and more preclsely the changes of
states may be assoclated with xo[4] , determined by the re-
lation (2.23).
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Eq. (3.14) may in general be written in the form /98
2
Vl _ 1
Ve Lo (3.18)
h1+31—("w+¢.°)+—9'"
which for strong shock waves assumes the form
Vi _pmlen  Rki—e  xe—1 (3.19)

Vo hite  hite  xe+l’

The shock adiabate corresponding to the state of equilibrium
behind the shock wave may be calculated directly by using the
values of xe taken from the tables of equilibrium states of the gas
(analogous to those given in Fig. 2.4). However, the calcula-
tion of pressure and temperature, on which %o depends must be made
using the equations of the conservation, the caloric and thermal
equations of state, and the law of mass actilon. Introduction of
%e allows a simplification of the calculation by the method of
successive approximations but in general xe does not have to
be introduced.

In explicit form the system for calculating a shock adliabate
for strong shock waves in a diatomic gas without considering
ionization has the following form [4]:

i ZeME ; (3.20)
p1 __xetl .
o w1 3-20)
T2 P 1.
= e Ty ! . (3.22)
P S
e iTar R (3.23)
h=(1—a)ha,+a(D+2hka,); (3.24)
4q2 =Kc(T) .
T (3.25)
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When lonization (which is assumed to start after dissociation
comes to a full stop) is considered in the system of equations,
one changes the last four equations

Ty P1 P 1

T. pe 204D (3.26)
R L .
=G sarprr’ - (P+2h)[(1-B)+B/]; (3.27)
B2p __ 2nm\32 ——’T
5 =2 L (SR ey . (3.28)

The Sach equation (3.28) 1is written for the case of a single
ionization.

A similar study can also be made for each of the zones of
partial establishment of equilibrium. In this case, introduction
of %, permlts a considerable simplification of the problem since
one does not have to use tables for each state of partial equili-
brium. Egs. (3.20)-(3.28) are also valid in thils case.

Equilibrium shock adiabates for bromium and oxygen, obtained
by the method of successive approximations [4], are shown in
Figs. 3.3 and 3.4. The variation of pressure, density, and
temperature versus M, l1s shown In Figs. 3.5-3.7.

An analysis of the equations and theoretical results leads to
the following conclusions. When vibrations are excited (increase
of ¢py a=p=0 ) x, decreases with Increasing temperature behind
a shock wave, and consequently, the compression increases. This
decrease in %, does not depend on pressure. As dissociation
begins for small « when the separation of the shock wave into

quasi-equillbrium zones is only possible, the contribution of
aD

(l-a)’l‘ *
As long as this wvalue 1s much less than unityxedecreaseg with an

dissocilation depends on the value of the ratio

increase of temperature (Egs. (3.23), (3.24)). The pressure
dependence is determined by Eq. (3.25) which shows that with a
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decrease of pressure behind a shock wave, identlcal degrees of /100

dissociation are obtained at lower temperatures (see Fig. 3.6).
When the degree of dissociation 1s high, the contribution of the
dissoclation energy becomes considerable, the value of x in-
creases, and the amount of compression decreases.

The maximum compression will be much greater than in the case
of an ideal gas and may, for example, equal 20. The effect of
ionization on compression is similar to the effect of dissociation,
and 1n general the appearance of additional heat capacity in a o
gas results in a decrease of % . For large initial ionization
% I1ncreases, with the orlgin of the second lonization 1t de-
creases again, etec.. As a result a shock adiabate assumes a wavy
character (see Fig. 3.3). A more detailed analysis shows that the
parameters in a shock wave may change nonmonotonically when pass-
ing from zone to zone (see also [5,6]). In practical calculations
of equilibrium states behind shock waves in a gas mixture, in
addition to the method of successive approximations [4,7], methods
were proposed that use tables of equilibrium states [8, 9, 10].
Finally, there are tables of gas parameters behind a normal shock / 101
wave that are based on tables of parameters for equilibrium states
[11, 12, 13].

Calculation of the Structure of Shock Waves in Alr

To study nonequilibrium flows in normal shock waves it is
necessary to solve the system of differential equations that
describes the chemical kinetics of the gas. If in calculations
one does not use digital computers, then only estimates are possible,
which in certain cases permit the obtaining of fairly accurate -
results [14]. However, the choice of the simplifying assumptions,
necessary for a solution, and especlally an estimate of the
conditions of the validity of the solutlons obtalned are compli-
cated and should be based on a clear understanding of the role of
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different kinetic prccesses and the ability to distinguish
dominant reactions.

The development of computers had the result that the cal-
culation of a normal shock wave became a theoretically simple
problem. The basic condition of obtaining correct results is
to know the kinetics of the processes. Such calculations were
made in both this country (for example, [15,16]) and abroad
(for example, [17,187). The basic features of the air flows
in shock waves are well known. At the present time we can
only speak of Increasing the accuracy of calculations as the
new data on reaction rate constants appear, and of studies of
more subtle effects in shock waves, such as, for example, the
variation of electron concentration. Also in the case when
computers are used, there still remains the difficulty of dis-
tinguishing the dominant processes since when too many processes
are considered, the calculations become laborious. However,
even here computers may be useful since they make 1t possible to
make calculations that permit one to estimate the effect of
individual processes.

Lin and Teare's calculation remains as one of the most com-
plete ealculations of the structure of shock waves in air [18].
The calculation was made for chemical reactions according to
the scheme (1.66)-(1.71) which considers a large number of
different lonlization reactions. The reactlion rates for a majority
of 1onization reactions are known only superficially. The calcu-
lation estimates thelr relative importance. /102

The gas dynamics equations of flow 1n a shock wave have the

form

P1ll; = Pacllen;
p1+p,u§=p..+pa.’..: (3.29)

2 D, 82

L2y ot bl M
—— — = e —_— —_—

QT T 2 fo 2
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Figure 3.7. Dependence of the
equilibrium temperature
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Figure 3.8. Typical distribu-
tion of temperature and density
behind a shock wave in air for
u_= 6.9 km/sec, calculated
consldering the connection be-
tween the vibrational excitation
and chemical reactions (solid
line for p_ = 0.02 mm Hg,

dashed line for p_ = 2 mm Hg)*

vy (1.31) is convenlent to use as the concentratlion of components.

The thermodynamic relations are written as

PRT D12
]

p=——

Mﬂ

1
e=-7°;- 2 eMy,

(3.30)

3

where e, depends onthe translational and vibrational temperatures

i

of the components, and M; 1s the molecular weight of the gas

in front of the shock wave.

Dalton's law implies that

[

(3.31)

¥ x/A. 18 the ratio of the distance behind a translational-
rotational discontinulty to the mean free path of molecules in

front of the discontinuity.




Finally the equation for the conservation of mass under
the assumption that the air consists by volume of 79% nitrogen

and 21% oxygen yields
To+ 210, +Tvo 21 (3.32)
In+ 2y, +Tvo 79

The connection with the relaxation of vibrational excitation was
considered using the (VD method (see p. U48), i.e., the dissociation
rate constant was taken in the form

=)

ib 1s related to the transla-

and the vibrational temperature Tv
tional relaxation by the equation

degi _ e(Mi—eu (3.33)
dt o

kv Tleo
by=—r— 1 —

- Ty Poo
exp —— ~—1
Tvib
In this case, the vibrational relaxation of O2 and N2 was con-

sldered, and it was assumed that the vibrational temperature of NO

is in equilibrium with the translational temperature, since NO
is formed from particles with sufficient energy.

The equations of chemical kinetics are written for each
component, for example,

d1o,

1
R = (X k}sz“*'kfsTN'*‘kaTN.) TO; n'+
Pee

(3.38)
+ (krSTNoTo +krsT§;o) ":t Moo + Z kfl’]'%:'n (-S:T)z ni.

However, in this form the system of equations turns out to be over-
determined, and one may either exclude Egs. (3.31), (3.32) or




exclude one or two kinetic equations; to determine the sufficient -
concentrations of components one uses Egs. (3.31), (3.32). “

Subsequent calculations reduce to solving a system of
differential equations of the form (3.33), (3.34) using the
relations (3.29), (3.30), (3.31), (3.32) for the initial condi-
tions ¥yo0,=0.21; YN,=0,79; yn=yo=yNo=ex=0 . This formulation of
the problem is rather typical of shock wave calculations.

The calculations were made in the pressure range 0.02<<p=< 0,2
mm Hg and speed range 45<<uo<7km/sec. With the aid of a
computer, one obtains the variatipn gf thg chemical composition
of the gas with time or distance x=\u(f)df from the shock front
for the translational and rotational degrees of freedom. f

Typical plots of gas dynamic parameters and the composition of
the mixture are shown in Figs. (3.8) and (3.9), respectively. One
should note the typical rapid variation of the concentration of
O2 and N2 at the beginning of the process (within the distance of
ten free paths from the wavefront, the degree of dlssoclation is 75
and 50%, respectively; this 1is associated with a temperature drop
within the same length by a factor of 2) and a very slow approach
to equilibrium values. Thus, forN, the concentrations and temper-
atures differ from thelr equilibrium values by 10% only at a dis-
tance of several hundred free paths. ‘ ,ﬁ

First, dissoclation of oxygen occurs. The dissociation of ‘
nitrogen is much slower and to a lesser extent, even at speeds glou i
on the order of 7 km/sec. The fact that the maximum concentra- ‘
tion of NO2 exceeds the equllibrium value is of basic Importance.

The fundamental reaction that starts the entire process
behind the shock wave is in the form of the dissoclation of 02.
Atomlce nitrogen, particularly at moderate shock wave speeds, 1s
formed as a result of the exchange reactions (1.69) - (1.70).
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lines based on the solution
{191 for u, = 6.55 km/sec)

These reactions along with (1.68) which runs in the opposite
direction lead to a formation of NO. The equilibrium in ekchange
reactions is established faster than in the others. Reaction
(1.68) reaches rapidly a state of quasi-equilibrium, and follow-
ing a change in the temperature, it leads to a drop in the con-
centrations of NO. Thus one obtains a maximum of yNO. At

higher concentrations of NO and O reaction (1.69) goes from right
to left and also results in a drop of concentration of NO. The
reactions that result in a formation of NO are bimolecular, and
therefore the value of the maximum is practically independent of
the pressure.

The fact that dissociation of nitrogen is practically absent
in weak shock waves and that in strong ones it starts after
dissocliation of oxygen comes to an end was often used in calcula-
tions (for example, [147]).
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The effect of a different choice of reaction rate constants
does not result in any significant changes of gas dynamic para-
meters and gas composition behind a shock wave, as one can see
from Fig. (3.10) which shows the results of shock wave calcula-
tions using the constants proposed in 1961 [19] and in 1963 [18]
(see also [15]). Comparison with experiment shows that theoreti-
cal results differ from experimental ones at high shock wave
intensities. However, the difference is relatively small (2-5
times over the length of relaxation) and it decreases. as -the
values of reaction rate constants are improved. In general, the
accuracy of the existing calculations is satisfactory for main
gas dynamic applications.

The law of binary similitude pt = const 1s satisfied for the
greater part of the shock wave. This is assoclated with the fact
that the fundamental reactions (1.66) - (1.70) are binary and go
in the forward direction. The reverse reactions, however, are
ternary, and at gas densities that exist behind a shock wave
they may be neglected in the main part of the shock wave with the
exception of the reglon close to the state of equilibrium, where
they play an important role.

In Figs. (3.8) and (3.9), the distance measured on the axis
of abscissas is essentially divided by the density, since the
free path is inversely proportional to the density. According
to the binary law of similitude, the dependence on the initial gas
pressure in front of a shock wave is manifested only at the end
of the relaxation zone.

B N R

Calculation of the ionization of air

in a shock wave

The accuracy of the electron concentration calculation is
lower than for neutral components, since the theoretical rates of
ionization reactions depend not only on the accuracy of the
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ionization rate constants, but also on the accuracy with which the
concentrations of the gas components that become ioﬁized have

been calculated. Therefore, the use of different sets of
reaction rate constants has a particular effect on the electron
concentrations.

The rate of ionizatlon for different groups of processes 1s
shown in Fig. 3.11 for three speeds of a shock wave. Curve 1
(atom~atom) refers to the ionization processes in collisions /106

————

N-0O, 0-0,..N-N,. and. gives the sum of lonization due to these:~  :iiig

ireactions. Curves 3 (molecule-molecule and atom-molecule)
refer to the sum of reactions of the molecular components.

According to the computational results, the atom-atom reactions
are the most important group of lonization processes, especially
if the shock waves are relatively weak. The ionization processes
by electron impact may be neglected at flow .speeds relative to the
wave of less than 5 km/sec, but they may become important at
speeds greater than 10 km/sec.

The effect of pressure on ionization is hardly felt, since.
the binary collisions play the dominant role. The N-O (1.109)
reaction 1s dominant among the atom-atom reactions in the range
conslidered., However, as the wave reaches a speed of 9 km/sec, the
effect of the N-N (1.110) reaction becomes just as important.

Normalized electron and ion densities are plotted in Fig.
3.12. The electron concentration increases monotonically until
the atom-atom reaction starts to reduce it. At moderate shock
wave speeds, the NO+ ions form the principal fraction of the
lons, and at speeds over 9 km/sec the N+, O+ ions become dominant.
The maximum of the electron concentration, manifested when flow
speeds 1n front of a shock wave become from 5 to 9 km/sec, 1is
important. At shock wave speeds of 2-4 km/sec, the electron con-
centration is rather small, and at speeds over 9.5 km/sec the
maximum of the electron concentration vanishes.
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Fignre 3.13. Comparisom off theoretical andl experimential
values off the electrom densdity distributdiom belfrindi &t shack wave
im gir for w = 6.9 In/sec, p = 0.02 mm He: theoretifcall curve 1
was obtainmed far the value of the resctiiom constant (1.112), curves:
2 amdl 3 were obtained by Increasing and deecreasdng it, respective-
1y, bty & factor off 3 att constantt values; of the rate cons.ftianﬁs; for
the remalining reactionsy daots refer o experimential data, circles
are far w = 6.95 m/sec, triangles for w = .85 km/sec.

Fig. 3.13 shows a camparisem betweem theoretical results 4108
andl expertmentt [20]. The curves cbtatned theoretically repro~
duee falrly well the shepe off the forward front of iondizatiom..
However, behdnd the maximum the deviations are sdgndificant, whieh
Is apparentily due to experimential errors..

Whem the flow speeds Im front of the shoek wave are greater
tthmfm 10 kmfsec the alr lontizatlion may be considered as fonization
im atomtic gases (aee page 63). The width of the zone of dissceia—
tlom under those conditlons is wery small, and the width of the
zone: aff relaxatilon s determined By londzatiom processes. Caleu—
lattions are difffcult, because one has to consdder a large number
aoff chemiical compeunds formimg behind the wave, as well as the
large mumber off the excified states off atems and moleculles and
radizttiom processes. Nevertheless, whem processes are combined
Iinte quasi-equiiliibeiom blocks, the required estimates cam BHe made
[z11.
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Figure 3.14. Dependence of the product of the relaxation time
and the pressure before the front of the shock wave on the
velocity of the shock wave (solid line - ionization relaxation
for u.<9 km/sec from [18]; points - experimental results from
[20]; dot-dash line - estimate of dissociation relaxation).

The reactions N+O=NO++e, N+ N=Nst++e give the main
fraction of electrons in the initial stage. As the electrons
accumulate, the role of the electron-atom collisions increases,
and the rate of ionization is determined by the electron tempera-
ture (see also [22,23]). 1In contrast with the fact that the

velocities before a shock wave — where extension of the zone of
relaxation is determined by the kinetics of molecule dissocia-
tion — range up to 9 km/sec, at velocities above 10 km/sec there

oceur qualitative changes in the process, and the length of the
relaxation zone is determined by the ionization processes. In
addition, in the 9-10 km/sec velocity range, the time of relaxa-

tion increases discontinuously (Fig. 3.14). /109

The sharp widening of the relaxation zone 1s assocliated with
the disappearance of the maximum of electron concentration. Cal-
culations [24] show the following process development Dissocia—'
tion of O2 and N2 occurs behind a shock wave front, and the
electron concentration increases due to the reactions (1.109) and
(1.110). The charge redistribution process slows down the reverse
processes by lowering the concentrations of NO+ and N2+. This
results in establishment of a local equilibrium of all ions. The
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temperature drop behind a wave due to dissocilation lowers the rate .
of formation of electrons according to the reactions (1.109),
(1.110). Since the dissociation of nitrogen continues when the
veloclities of the flow before the wave are less than 9.5 km/sec,

it results in the formation of an [e] maximum before the dissocia-
tion ends. At large flow velocities, the rate of reactions (1.109),
(1.110) becomes less than the rate of dissociation of N2. This
results 1in a situation where nitrogen dissociates almost completely,
and the energy confribution of ionization is still low. Therefore,:
wlth an increase in the velocity of the flow before a shock wave,
the equilibrium temperature and the electron concentration behind

it increase sharply. Near the front of the shock wave, the re-
actions (1.109) and (1.110) do not have enough time to produce

an equilibrium concentration of electrons, and after reactions
(1.109), (1.110) decelerate, the electron concentration slowly
approaches its equilibrium value after dissociation had come to

an end. The disappearance of the maximum results in a situation
where a concentration of electrons is reached which is comparable
with equilibrium after a long time, and it is only the latter

that determines the extension of the relaxation zone.

K03

] P
20— : An analysis of ionization
ol I-h‘ processes when the velocities
/' % before a shock wave are greater
0 2 # pxWIkG/cm than 10 km/sec has shown that
Figure 3.15 Profile'of the up to =058, (p) the process also
parameters of a non-equili- occurs according to a binary
ggiuﬁ §a§2b§3§ggc? shock wave scheme, and for each velocilty

one can give a universal de-
pendence on pressure (Fig. 3.15)
[21].
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Effect of the connection between dissociation
and excitation of vibrations

Calculations showing the effect of the excitation of vibra-
tional degrees of freedom on dissociation were made for a shock
wave in nitrogen and oxygen [25,26]. 1In this case, the relaxation
times obtained by Blackman (1.60), (1.61) were used, and the
dissociation rate constants for oxygen (1.72). Dissociation of

nitrogen was assumed to go through the reactions
NiA NZINHN; NN 22N+ Ny,
s Xy

where -7 ——“Evg_‘.
kr,=3,33-10°T 2 molemsec’ {110

cmb .
—_—
mole“sec

| co

k,,=3,33-10°T

Computations show that, when the velocity of the shock wave
corresponds to a 10-20% dissociation, the latter terms in Eqg.
(1.75) do not play any role. The vibrational temperatures
in the CVD model may have a maximum exceeding the equilibrium
temperature and even greater than the corresponding local value
of the translational temperature. The vibrational temperature
becomes equal to the translational temperature during the relaxa-
tion process and then follows it.

The CVDV model differs from the CVD model (Figs. 3.16, 3.17;
equiprobable possibility of dissociation).

In the CVDV model, the time of relaxation of vibrations
increases substantially, the time of the formation of atomic
components increases and the vibrational temperature always
is lower than the translational tempeature, even though in some

cases it attains a maximum just as in the CVD model.

The formation of a "plateau" of vibrational temperature turns

out to be characteristic. The vibrational temperature, after the
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Figure 3.16. Relaxation behind Figure 3.17. Distribution of
a shock wave in oxygen (solid temperature behind a shock wave
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P, = 2.23+ 10* kg7em?, T _= 249K. for u_ = 7 km/sec, p_ = 1 mm Hg,
a - function T/T_(x); Tw = 285 K.

b - function v(x)

initial sharp changes, remains almost constant, slowly approach-
Ing the translatiocnal temperature when passing to an equilibrium
stage. This is assoclilated with the fact that the transition of
energy from translational degrees of freedom tc the vibrational
ones 1s almost balanced by a removal of energy as a result of
dissociation. The experimentél values of the rate of dissocia-
tion are determined precisely in that region of quasi-equili-
brium. Therefore the dependence of the pre-exponential factor
in Arrhenius' law on the temperature comes into play. When cal-
culating relaxation behind shock waves with dominant dissociation
from upper levels in the region of quasi-equilibrium we used the
dissociation constants obtained by Camac and Vaughan [27], but
without considering the dependence of the pre-exponential factor

on the temperature
(Boq="9" 10" exp X

X(— 59300) cus

T mole sec

By the same token the temperature dependence is introduced
in the factor n=kﬂ(@)eq which is taken as equal to unity at the
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temperature H,OOO°K. In the expression for the vibrational
energy we considered cubic terms and took 34 levels for the
harmonic oscillator.

In the calculation we studied the effect of various parame-
ters but primarily U (see Eq. (1.88)), which was taken equal to

L D D 3 | and o , where %=T,,=59000° is the charact-

6k ° 3 & &
eristic temperature of oxygen dissociation. The relaxation time
‘te was the second parameter whose effect was studied.

As already noted, Fig. 1.13 (curves 1,2) clearly shows the
deceleration of dissoclation, caused by the delaying effect of the
excltation of the upper levels of the molecule - so-called
time of incubation. By selecting values for 7, and U one can
obtain the dissociation constant and the time of incubation that
closely correspond to experimental data. For this calculation

the agreement was obtained for l/=v€% and 1, calculated using
(1.58), and for l!==§% and <, equal to one-half the theoretical
value, /112

The variation of the pre-exponential factor is shown in
Fig. 3.18. This temperature dependence for models with dominant
dissociation in the 4,000~8,000°K region is fairly sharp — on
the order of l/T3. For an equiprobable dissociation the tempera-
ture dependence is on the order of 1/T. Thus, it is possible to
obtain a satisfactory agreement between this scheme and the
experimental data.

Calculations of shock waves 1n the alr considering vibra—

-

tional relaxation of components are given ‘in [28]

Shock waves in gases different from the air

In addition to the air the calculations of normal shock waves
were also made for other gases [29]; the scheme for these calcu-
lations 1is basically similar to the one already presented.

s
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Calculations of the direct shock waves in a gas consisting
of C02, N2 and Ar were made uslng schemes and reaction constants
from Table 8 for different compositions of the atmosphere(0.09 CO,,
0.01 Ar, O.QI%zand 0.74 N2, 0.25 CO2, 0.01 Ar) for different
altitudes [30]. As an example we give Figs. 3.19 and 3.20. As
in the air, the atoms form fairly fast behind a discontinuity;
however, the remaining molecules also play a great role. At the
beginning of the process the fundamental role is played by the ion
N2+, then atomic lons dominate. The ion equilibrium is attained
much later than the equilibrium of chemical composition. There
are also differences depending on the initial composition of the
gas -~ state behind a shock wave in gas mixtures with a high con-
tent of CO2 approaches equilibrium sliowly.

Direct dissociation [reactions (1), (2),Table 8] was the basic/113
mechanism of the decomposition of CO, and N,. Reactions (3) and (15)
become Important in later stages of the process. The electrons
form malnly due to associative ionization [reaction (13)]. The
reaction in which CN forms (1%) turns out to be very rapid, and
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in @ shock wave for M = H1.3 presence of a maximum of the
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CN..

The concentration of CN, im particular, strongly depends
on the initial (0’0{2 conbent in the mixture.  The distaribution
of ON hehind & shork wave is of particulzmr imterest in connection

with fits effect on gas radiation.

N
B

Peculiarities of the distribution of wesk shock wawves

Above we have described the repularities im the strocture
of the relaxation zone, which are typical of strong shork waves
and waves ©f moderate imtensity. Howewver, If the wave is wedk,
namely such that the speed of its propagation D is less than
the frozen speed of sound ag (such cases when g >D>a. Ire
possible in a Telaxing medimm), then the gas flow In the wave
will have & different charachter: = discontinwity is sbsent,
where the profile s smooth, the state of the gas in the
wave changes contimnuously from the imitizal eguilibriom stabe
for x——m o the Final z—wf5 7,32—36. (In foreign literature such a
struchbire is usually referred to as a2 "shork wave with Twll

dispersion™).
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Filgure 3.21. Velocity profile in a perturbation wave
before a mowing piston: a — for «x3 b - Por i-x 3
e — for w»x .

A shock wawe with & smooth profile represents essentially
the Nimitimg state which arises in front of a flat piston which
is instantaneously brought into motion with a sufficiently small
constant welocity. When this problem is studied in linear
approximation [7, 37] one obtains the following picture:* a
Aiscontinuity of low intensity Torming att = 0 (x = 0) first
propagates with the speed D = Brs and its intensity decays as
&%= , Wwhere k~ﬂj—ﬂ,
a5 the time of relixation T . The wawe structure for I<l @=th)
is determined by the specific features of the propagation of the
high-Treguency disturbances (see Section 4.1). Wave profiles
for 7T«£1 =amd 7I~1 are shown schematically in Figs. 3.21, a
and b.

» and =t has the same order of magnitude

For I»1 the wave of disturbance has a smooth profile
{see Fig. 3.21, c). The region in which the speed changes from
© to Bps in the 1inear approxlmatlon has the characteristie

width ‘ ,V &—% 3x , and the maximum values of the
,.; agTt

L i RNET AP SRS IV TD DU

® TIm ‘the classical case when a2 medium i1s in the form of an
idenll gas, im fromt of 2 piston that starts moving at a constant
m]lmiﬂ:y there arises a shock wave That also moves at &
veﬂ@eiﬂ:y D>a , zand Is Followed by a region of uniform
ﬂm If, im addition, agea » Them D=z =and the Flow is
EOrI rylze]l:y desrribed by 2 solutiom of & A1inear {aconstic)
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derivatives of gas dynamic functions, for example %%— s 1lie

on the line x=a.t . Since the width of the relaxation 2zone
increases as x¥ , the maximum values of the derivatives du/dx
etc., approach 0 as % 1independently of the value of Ug.
Thus, according to the linear theory with time the wave becomes
"washed out", and it does not approach an asymptotic stationary

state.

This result disagrees with the actual limiting state Qf
a gas in the wave before a piston moving at a constant velocity.
The reason for it is the fundamentally nonlinear character of
flow in a compression wave (what is paradoxical is that the
structure of flow becomes most complicated precisely in the
limiting case when y—»0 ). We shall describe the structure
of the 1limiting state on the basis of [33] and [125].

The solution willl have a different character depending on the

value of the parameter
s=—20_, (3.35)

ar—a,

There 1s a certain piston velocity uo*,equal in order of magni-
tude to a—a. , for which the velocity of the wavefront becomes
as {»>oo strictly equal to the frozen speed of sound, 8p. In
a coordlinate system moving at the speed af,tx>this case corres-—
ponds a steady flow with Mf = 1. The derivative du/dx at

x=at (wavefront) is discontinuous) the function itself,
however, is continuous (see Fig. 3.22, case Djas=1 ).

For wuy>uee the wavefront represents a discontinuity

moving at the speed D>a; . The width of the relaxation zone in
this case will be on the order of «D. For /116
0<Il°<uo. (3'36)

the wave has a smooth profile, and the velocity of its propagation

D will vary in the range
e.<D<a, (3.37)
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Here depending on the value of the parameter s the width of the
relaxation zone, d, will have different values:

a) for s~1 (i.e., for w~ar—aq, ).

b) for s«1 (i.e., for wu<a—a. ,.) the width of the relaxation
zone increases in inverse proportion to s:

d~ 2 _or—ad (3.39)
E “D

This property of very weak compression waves with a smooth profile
was first discovered by Ya. B. Zel'dovich [32].
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Instability of the flows of a relaxing gas

A characteristic property of steady flows of a relaxing
gas 1s their instability which is manifested when flow velocities
u vary in the range a>u>a, [33,38]. Without giving the proof
which can be found in these papers we shall give a qualitative
description of the relaxation process occurring when the relaxa-
tion parameter g deviates from its equilibrium value qg *

Let us consider a homogeneous equilibrium gas flow(q = qe),
which moves with velocity u along the x axis.

Suppose that at x = Xq (point A in Figs. 3.23 and 3.24)
the value of q is given a small increment and 1t becomes equal to
q' (point B). Here according tothe law of the conservation of energy
the local equilibrium value of de will change and will be equal to
Qe' (point C). If then the velocity of the flow u is less than
the equilibrium value or greater than the frozen velocity of

sound (u<a, Or u>ay) , then the relaxation process will develop /117

according to the scheme shown in Fig. 3.23, a and b (so0lid lines
show the variation of g, dashed lines - variation of qe). As a
result the system will return to its initial equilibrium state.

For ao>u>a. the behavior of the relaxation process will be
completely different (see Fig. 3.24). 1In the case shown in
Fig. 3.24, a, the system achieves a new equilibrium state that
differs from the initilal one. In this equilibrium state wu<a, .
What is important is that in this case in the initial stage of
the process the curves describing_the variation of q and q, move
apart instead of coming closer.

In the case shown in Fig. 3.24, b, the velocity of the flow
as a result of the relaxation process reaches the value of ap but
equilibrium will not be reached. Subsequent steady flow is
impossible (when the gas flows with an addition of heat there
develops a phenomenon of the type of "heat crisis").
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3.2 Nonequilibrium flows in nozzZles

Basic properties of steady nonequilibrium
flows in a stream filament

The study of a nonequilibrium expansion of chemically reacting
gas mixtures in a stream filament is of considerable interest
in connection with the development of hypersonic aerodynamic
tubes, gas-dynamic lasers, and jet engines designed for a
flight at high supersonic velocities. Along with the purely
practical side these problems also deserve attention from a
theoretical polnt of view, since they permit us to study in the
most simple form a number of features that are characteristic
of any expanding flows of a relaxing gas.

Let us consider a steady state nonequilibrium gas flow in a
stream filament of variable cross-~section (guasi-one-dimensional
flow in a nozzle)*., We shall assume that a thermodynamic equili-
brium exlsts within each degree of freedom and the relaxation
process ends by establishing an equilibrium between the active
and internal degrees of freedom (see Section 1.1).

In the absence of viscosity, heat conductivity, and diffusion é;;Q
the full system of equations describing a nonequilibrium flow of
a multicomponent gas mixture in a stream filament consists of the
equations of continuity, momentum, energy, thermal and caloric
equations of state, and the equations of kinetics, and has the
form

puF =const or -2&_ 4. 9% +fi-f‘=°; (3.40)
4 a -

udu+v%?4=0; (3.41)

* Three—dimensional gas flows in nozzles are studied in

[39-447.
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.‘12’_+h=}-j=const or udu-tdh=0; (3.42)

p=p(p T, <q;>) (3.43)
h=h(p, T, <q;:>) (3.40)

Here <¢;> denotes the set of all relaxation parameters gq, g .., gn
which describe a nonequilibrium state of the gas, for example,
energy of vibrations, concentration of components, etec.. 1In
contrast with equilibrium flows, where ¢;=C; (Ci are constants),
in nonequlllibrium gas flows these parameters are not functions of
the gas state alone but depend also on the kinetic properties

of the medium (rate of the physico-chemical processes) and on

the flow dynamics, for example, on dp/dt. The equations express-
ing the rate of change of the parameters a4 in a gas flow are
called the kinetlcs equations or relaxation equations.¥ The basic
form (2.36a) 1s rarely used directly. Other forms that follow from
(2.36a) are used more often. Naturally, the relaxation equations
assume different forms depending on which processes they charac-
terize, how these processes are interrelated, and in terms of
which variables the equations are written. ¥*¥

If as the parameters qq we choose the specific variables
(per unit mass), for example the molar-mass concentrations or
mass fractions, then in terms of these varlables the relaxa-
tlion equations may be written in a form which is simplest and

* In physical chemistry the equations of kinetics usually
refer to the equations for the rates of flow of the physico-
chemical processes in a system at constant volume.

b As the variables characterizing the composition of a mixture
we can use the molar or mass fractions & and e, molar-

volume, and molar-mass concentrations [xij and Cys etc. (See
Sections 1.3 and 2.1).
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most general for different processes
d
—;q;—=Fl(pv To <‘h>). (3°l45)

where d/dt denotes the total time derivative (in the case of a
steady quasli-one-dimensional flow d/dt = u d/dx). The

specific form of the functions Fi for different physico-chemical

processes is gilven in Chapter 1. In particular, for vibratlonal
relaxation in a simple diatomic gas, Eq. (3.45) assumes the
form (1.57) (model of a harmonic oscillator)

dey _ epe—ey

a =T, p’ (3.46)
and for an ideal dissoclating gas - the form (2.26) or its
equivalent

ga_= CP27—S[]—G ai—a’], (3')47)
dt o l—a,

where . (T, p) 1is the equilibrium value of the degree of disso-
ciation (see Eq. (2.16)).

For a mixture of chemically reacting gases the relaxation
equations can be wrlitten in terms of the variables ¢; and cy; as

day _ IiMp  dep Ty
dt _ P * dt p.A! (3-’48)
_ 42X _ 45 the rate of change of the

where Ji=J(e, T, <gr>)= ;
3 (b, —ap) dt
i-th component, mole/cm> sec (see Eq. (1.36)).

The form of the functions Ji in terms of the variables
T, [Xk] and variables T,p, @ for a single reaction 1s given in
Chapter 1. For a system of m reactions with the participation

of n components R

”n ] n
Ea‘lel:f__—)E blixl; j=lv 2a---1m (3.”’9)

i=1 Ry iml
In terms of the varilables c, Egs. (3.48) assume the following
form (we sum the rates of change of the i-th component in all j
reactions):

m n n

de 1 re a Iy

dtl Y 2: (b1j— aiy) [k/fp [ et —te® ] ] C?U]' €3:50)
=1

leal 1=l
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(11,;:2@ s fb]_E lb{j ((3..5]]_))

e}

TIin tthe case of a mubtual connection between the processes of the

excitation of wibrations and chemical meactions tthe relaxation J/1220
eguations will have a more complicated form (see Chapter 1).

ITf we write the melaxation eguations im terms of other wariables
(for example, in terms of [[Xi]])), tthen they will assume @ @ifferent
farm

g L =g §D, [ XD

Below we shall use tthe melaxation eguation in the form (3.45),
assuming that the cormespondimng warisbles are used as Qy - We shalil
also assume that the gas is a mixture of tthermally ideal gases that
obey Clapeyron's Law. Egs. (3.43) and (3.44) for the pressure and
specific enthalpy can then be wmritten as

”’”E"“M Em— T “WE_ (3-52)
s (3-33)
/h--xjﬂ' e, -]—-h,,. (3-5%)

Here c:@ is the specific heat czpacity of active degrees of Tree-—
dom, @nd hp is the specific enthalpy of Tormation.

The expressions for p and h with different ways of express—
img the concentrations (im terms ©F s, &, o, [X], etc.) are given in
Section 2.1. A detailed of the formuilas connectimg
o,k » €bec. Is also given therein.

Thus, the steady goasi-one—-dimensional flows of a mon-
eguilibrium gas are described by the system (3-30) - (3-4%5). The
Imitial zmd bomndary conditions will depend on the ftype of the
For 2 purely supersonic flow, there Is of course a
problem wifth imitizsl conditions. For a gas flow in the Lavalle
im the supersonic regime the conditions are given for the
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preconbustion chanber and for the critical section. The gas Im
tthe precombostion chanber is usoally assumed to be im egoilibriwum.
The condition in the critical section dettermimes the maximum
possible flow rate for which a supersomic flow can be realized.

The basic Teatures of nonegquilibriom flows are associated
wiith the behavior of the parameters Qy Along thre mozzle. One cam
distinguish three basic types of noneguilibrimm flows: Tlows
close to eguillibrinm {g~g.) 3 Flows close to being Prozen {gerconst)
and the intermediate types of flow. OFf course, each specific
ease dependimg on the kKinetic properties of the medimm and the
gerometric characteristics of the mozzile (stream Tilament) withim
the Indiwidoal parts of a nozzle there may be realized the first,
second, or all three types of Tlow.

Let us consider the particular features of moneguilibrimm 4/ 121
flows Im @ stream Tilament usimg the simple example when the state
of a gas s -aharacferizaﬁ by a single relaxation parameter oq
and Bg. (3.4%5) becomes

%.—_-mp,, T, 9 3-55)

F in itself does not determime how the system will react to a
deviation from eguilibriwm. Thus, for example, ¥ = © Iin both
B steady eguilibriom gas and in the Mow of a Frozem gas.

In the flow of an eguilibrium gas with non-zerog ‘
gynamlic Functioms F=dg/di#D, even thongh the rate of the
relaxation process is infindte. In view of this Ffact let ms
write Eg. {(3.5%) im the form im which the time of relaxstiom
mppears explicitiy:

%__-___i: ::: . (3-56)
=1 > (3.5
Ff=—F / (% - (3-.58)
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T, ‘having the dimension of time, is essentially the time of
relaxation: the characteristic time needed by a gas to reach
equilibrium. For example, for a flow close to equilibrium the
function F may be expanded in a Taylor's series

oF (p, T,
F=F(p. T, q.(0. TN+(525) (g—q)+---
q e T
Considering that F(p, T, ¢.)=0 > Eq. (3.55) may be approxi-

mately written as

49 __g.—¢q

# <o’ (3.59)
where ¢t is determined by the ratio (3.57). 1In this form the
physical meaning of t as the characteristic time of the process
for establishing equilibrium is obvious. (Here we shall not
dwell on various individual special cases. Also we shall not dis-
cuss the fact that, when F is given not as a function of p and
T, but as a function of another pair of thermodynamic parameters,
for example p and p, then tj=— 25- generally speaking may
differ somewhat from t given by (3 57) For more details, see /122
[34]; below this is unimportant.)

Let us study the behavior of q(t) when a gas moves in a
narrowing-widening stream filament (in a Lavalle nozzle), origina-
ting in the precombustion chamber where the gas is in equillibrium.
Here, at least in the initial portion of the stream filament, the
flow will be close to equilibrium (flow velocity is small), and
Eq. (3.55) may be approximately written in the form (3.59) ¥. If
qe and t are constant, then the solution of Ej. (3.59) will be in

the form
9()=g.+(9(0)—g,) e, (3.60)

* For certain processes, as for example for vibrational
relaxation, this form is exact whether or not g and 4, are close
to each other (see Chapter 1).
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Hence it is clear that for ##tr>»1 , even if the initial
state of the gas differs considerably from equilibrium, within
a major portion of the interval of t, with the exception of the
narrow region near t = 0 with the characteristic time scale fy~1
the flow will be close to equilibrium. In the other limiting
case when ftft«l the flow will be close to a frozen one.

In real flows, both t and de depend on T and p, and vary
greatly along the nozzle. In addition, even though these types
of flows may be realized in individual parts of the nozzle, also
in those cases the general structure of the flow will be more
complicated.

The variation of q(t) along a nozzle depends on the relative
values of the three time scales 1, ty and tcharthat are assoclated
with the thermo-kinetic properties of the gas and the gas-dynamic
characteristics of the flow [t(t) 1s the time of relaxation;

charis the characteristic gas-dynamic time - time spent by a gas
particle in a given part of the nozzle (for example, in the region
of supersonic velocltles or in the region, where rt~1. s,etc.);

ty(t) 1s the time scale characterizing the rate of change of qe].
We take

dﬂe -1
fo=| | (3.61)

With this definition, t,is the time segment within which the

equilibrium value of de changes by a value of its order of magni-
tude.

Sometimes the scale t,is chosen:.on the basis of T(t) or h(t)
[45,46], for example

=1
t'r—, T a4t ,

It 1s not hard to estimate the order of magnitude of the change /123

of tymp along a nozzle, if one uses the ideal gas model with a
constant heat capacity.
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Vaa (3.62)

where r is the radius of the critical nozzle cross section, A

In this case (,_ + 1)3,‘2 22— 1 (d n FIF, )..1

t —1
o x—1 Mo\ d@n

is the reduced velocity, equal to u/a¥*

Calculations show that the value of tyq along a stream fila-
ment outside of the region A « 1 does not change greatly. Thus,
if the distribution of the cross-sectional area of the nozzle 1s

F=FFo=1+ 0% 1=rtgh (3.63)

(the nozzle is approximately conical with the vertex half-angle
» ), then in the range from M = 1 to M = 3 the value of typ de-
creases approximately by a factor of 3.

When a gas moves in the nozzle, a sharp change occurs
usually not only in the local values of t(t) and tu(t), but in
the ratios t/tg, T/tchar,etc.. Usually this is caused by a very
strong dependence of the time of relaxation t on the temperature
and pressure; Thus, for vibrations, dissociation, and a number
of other processes, the value of 1, when a gas moves from the pre-
combustion chamber to the area of moderate supersonic veloclties
changes by several orders, and the ratio t/ty changes from
/ty <1 to t/ty >>1. Without giving a full classification
of the types of nonequilibrium flows depending on the relative

values of the scales t, ty and t >swe shall only note the basic

char
regimes.

If in the portion of the nozzle under consideration
JOLSR) (3.64)

and if the initial state in that portion is close to equilibrium,
then the flow will be close to equilibrium in the entire portion.

Ir

tcﬁar<<r’ (3-65)
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then the flow will be close to a frozen one¥., The region of a
noticeable deviation from equilibrium is naturally characterized
by the condition

T ~1,. (3.66)
Usually in the initial portion of the subsonic section of the
nozzle 1 <<t, (or A>0 ty»>~) and the flow will be close to equili-
grium. Later, as 1 increases or t, decreases, the values of T
and t, become of the same order, which results in a noticeable
deviation from equilibrium. The subsequent character of the
variation of g is determined by the relative values of the scales

T and tchar in the region, where t1~ty (the parameters in that region
(t )

will be denoted by the subscript "p"). If T,
then the flow will freeze rapidly and

interm char‘interm

dp will be on the order of 5 nterm

or T >>(

. t R
interm char/interm?

or even ~ 9.
de qlnterm

(qf is the
frozen value of q). The freezing process develops 1n precisely /124
this fashion in many practically important cases (rapid freezing,
localized in a narrow region between regions of near-equilibrium

and near-frozen flows, see Section "Method of Instantaneous

Freezing").

<<(t ) then before the flow

However, if T. .
€ 4 interm?

interm char
freezes (if it freezes at all) the value of g will change consider-

ably and cases are possible when Qo<<d; . pm-

Fig. 3.25 gives a schematic plot of q(t) which is typical of
nonequilibrium flows in a nozzle. The same plot includes values

of de for an equilibrium flow (t=0) and dg which are locally -

equilibrium values of q corresponding to the local values of T and

¥ For certain combinations of the scales 1, ty and t ., and the

corresponding initial conditions, cases are possible when g=qg_const,
l1.e., the flow is at the same time close to equilibrium and td a
frozen flow.
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p in a nonequilibrium flow.

We set
8=q—q,.. (3-67)

It is clear that, in order for the flow to be close to equili-

brium, it is necessary that
89, L1
(More precisely, it is also necessary that

db|dt L dg,|d¢).

Egs. (3.59) and (3.67) imply
g=q _1(&4__&
¢ dt dat ]’
Considering that in the region of a near-equilibrium flow the
differences q—q_ and ¢—¢ are-of'the-'same order, we obtain

q—:?e Y zt/t;. (3.68)
4 ge

Thus, the condition (3.64) becomes necessary for the flow to be

close to equilibrium.

For relaxation processes described by Eq. (3.59), it is easy
to obtaln a condition sufficient for the existence of a frozen
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state. Eg. (3.59) for g, <<q implies

t
s=aten(-{ L), (3.69)

L1
Consequently, for t>t1 the flow will be close to a frozen one
(g=const) 1if ¢
! ) S'£L<§l‘
P (3.70)
which agrees with the condition (3.65).
The specific features of nonequilibrium flows in nozzles

were studied in detail by Bray [47] using the example of an ideal
dissociating Lighth1ll gas. Typical results of Bray's calcu-

lations are shown in Figs. 3.26-3.29. They were obtained for the

following conditions in the precombustion chamber: To/Tq¢=0,1 and
polpaea="5-10-% , which corresponds to T0= 5900 K and Po= 115 kG/m2

for oxygen and T0= 11300 K and p0=215 .kG/cm2 for nitrogen; in this
case the initial degree of dissociation is 0.69.

The cross-sectional area of a nozzle was given by Eq. (3.63). All

the results were obtained for s = 0 [s 1s the exponent in Eq. /126
(3.47)]. For other values of s for which calculations were

made (—0,5<<s<<25) the behavior of a, basically remains the same,

and the following general law 1is confirmed: the stronger the
dependence of the relaxation processes on T and p, the more rapid

the freezing process and the more narrow the transition region
between the equllibrium and frozen flows.

Figs. 3.26-3.29 show the results for several values of a
dimensionless parameter of the dissociation rate

0— CITte ) [ Fm
2V nige RaT4a

which includes both the physico-chemical properties of the gas

and the geometrical characteristics of the nozzle.

For usual
hypersonic nozzles, the values of @ range from 3-108 to 3-1012.

The plot a(F/Fg) shown in Fig. 3.26, is typical of flows of
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o B e i Figure 3.28. Reduced velocity
the method off ﬂm&mﬁm&@s: (sclid lines — exact solutions
freczing) dasted line - approximate solu—
ttiom ustng the method off

imsttantaneous freezing).

dtissocistiong diztomic gases
(48], as well as of flows wdith
wibratfonmal relaxation [49-5I1],,
[118] (im this case instead of
@ We wSe ez[g)) and of fliows af’
air with relatively low tempera—
tures: [52,53]. The calecula—

-
of the %’fﬁﬁmﬁ fm @ Egl@ﬂ‘-. tiions made in [527] have showm
sonmiic mezzle.. that for air flows iIm axisymmetrie

mozzles with the diameter of the
critical section of ahout 1 em
for T,=3000—4000 and
po=1—100 sz” the freezing of the concentrations of various
componentts occurs mear the critical section and takes place
fatirly rapidly. For higher temperatures and pm'e:s:sum-e.si im the
precombustion chamber, the varistiom of the concentrat lons:
becomes: more complicated [5H,55].
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Method off Thstantaneous Freezing

Im meny cases, the variatifom of the ratio t/fty near 73127
the transitiom reglonm by a factor of severzl dozem cccurs withim
a smadll portliom off the nozzle, which permiitss us to treat approxi-
mately the reglfom of transittiom firom am aImost equiilibrinm flow
to am almost firozem flow as a certain "surface of discontinuiity™
or a "freezing paint"™ [46,U7]. Thues, one arrives at the follow—
fng model of @& nenequiilibrinm flow in a stream filament (mozzle)):
beflore a certhim points, the freezing pofnt, the flow is im ‘equilf ‘'
brinm; att the freezing polint all processes assaeclated with the
excitatiom (dfsactivation) of the internal degrees off freedom stop
Instantanecusly, and the subsequentt flow is frozen..

An approeoximate computatfonal method bBased on this model came
to be called the methad off instantaneous: freezing [46,U4771. If the
process: of transdtlom from am equilibrium teo a frozenm state ceccurs
sufficlently fast, the Increase Im entropy will be Iinsignificantt
[56], and the method off instantanecus freezing should as & whole
give falrly gpod results..

The most importantt polnt: in the practieal realizatiom of
the method Is the choiice of the freezing point whilch,, off ecourse,,
should Ite in the Intermediate flow reglon v~£f. . As a ceriteriom
to be used im the determinatiom of the freezing point, ene cam
use the folleowing ratioc, which can be deduced from Egs. (3R.66)
and (3.69):

N - (
|i gt | c@sTd) (3.1
There are alse other criteria for ld"ét_érmimﬁmgg the freezinmg

podnt., but & majority off them are essentlizlly variants off the
eriteriom (3.71). Bray [U7] determines the pesitiom of the
freezinmg palimt im the followlng way. The relaxattiom equattiom
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freezing point of the vibra- Figure 3.32. Effect of the
tional degrees of freedom in freezing of vibrational degrees
a nozzle. of freedom on the asymptotic

values of the velocity and
density in a nozzle.

for the degree of dissociation is written as

2@ ry—r
a PR

where rDis the rate of dissociation, and Ty is the rate of

recombination.
In the region of a near-equilibrium-flow,.the rates
d
rDand rp are both large as compared with I:&- » 1.e.,
da (3-72)

& &ry~rp.
dt<( o~TR

/128

As the gas expands in the nozzle, Ty and Tr decreases
due to the decrease in T and p. This is accompanied by a
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progressive devliation of o from its equilibrium value a_, where

e
occurs particularly sharply due to the exponen-
—Do/RT

)

the decrease of rp

tial dependence of rp on T (rp~e In the region of an
almost frozen flow, the rate of dissociation Ty becomes negligible
as compared with rRs and

—d_azrk»'o- (3.72a)

dt
Thus, as the state of the flow changes from an almost
equilibrium flow to an almost frozen flow, Tp changes from a
a

value much greater than ‘%54 to a value much less than ‘{E— .

Consequently, there should exist an intermediate reglon where

l%%-\ wlll be on the order of r When the intermediate region

D.
1s of small size, the values of a,p and T in it will not differ
very much from the values of a., ¢ and Te in the equilibrium flow.
Therefore, 1t 1s logical to define the freezling polnt as a point at
which the followlng relation is satisfiled

l da,
dt

|=to (b0 Tor @),

where ‘f 1s a constant on the order of unity which 1s usually
taken as equal to unity. Thus, the freezing point 1s defined
" by Bray as a point at which

(3.73)

l dae
dt

, =rp(Pr T., @).

The results of calculating the flow parameters using the
method of Instantaneous- freezing &nd’ the’criterion (3.73) are
shown in Figs. 3.26-3.27 with dashed lines. Bray notes that a
better agreement with the results of exact calculations may be
obtained if t=16. However, the method itself gives no basis
for an a priori selection of such a value of [-. What 1s im-
portant 1s something else — namely, the fact that the results
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only weakly depend on the choice of ¢ .

Using the method of instantaneous freezing, one can calculate
fairly simply the flow parameters for a gas with simple kinetics.
For diatomic gases, for example, Oz N, Cl, with a nonequilibrium
excitation of the vibrational degrees of freedom Phinney
[58] (see also [117, 118]) obtained approximate universal rela-
tions for the position of the freezing point and asymptotic (M—o0)
values of the ratios of velocities (ufue)o , densities (p/pe)w
pressures (p/Pe)w , and temperatures (T/T,), in nonequilibrium / 129
and equilibrium flows (Figs. 3.30-3.32). Here u and u_, p and Pg s

e
etc., are taken for the same value of F; the distribution of

F is given by Eq. (3.63). For sufficiently large values of M,
the ratios u/u., p/p. ,etc. will be close to their limiting (M=00)
values, and therefore the same plots may be used within a wider
range of the M numbers.

Fig. 3.30 shows a plot¥ which can be used to determine the
ratio of the temperature at the freezing point, Tf, to the tempera-
ture in the combustion chamber, TO, as a function of To and the

dimensionless parameter ¢

= r

210 tg8)/ 2RTo/ M
Fig. 3.30 also shows the values of F,/F, at the freezing
point. The possibility of using the method of instantaneous

’ TO=T(T0v p0)° (3.7}4)

freezing in the calculation of multicomponent mixtures of gases
with mutually interrelated reactions is not so evident, at
least for the cases where not one, but several reactions are
energetically and kinetically important. However, there have
been attempts to extend the method of systems with a fairly
complex kinetics [61-63].

¥ The plot is constructed on the basis of calculations by
A. V. Chirikhin using the procedure of [58], see also [117].
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Remarks on nonequilibrium flows with vibrational relaxation.

1. Similitude of flows in nogzles. If in Eqs. (3.40) -
(3.44) and (3.46) deseribing the flow with a nonequilibrium
exclitatlon of vibrational degrees of freedom, we change to
dimensilonless varlables
s F -_»2 5_¢ w_T
X ==, F='—'9 =i, p=—, T=—
F, P Po P po ' T "
.—— u — e. R) [
U= s € R, =—
VR, RiTyo ( M
and consider that
x ere=R,T/(exp8iT —1), tp=Bexp AT™"® and F=F(x
f ( A,B,08, F(x) are given), then the system of equations becomes
. — - 1 4, 1 du 1 dF
- F= y——F+ = —+—=———=0,
7 ) P dx+“ dx F dx
dx P dx ( )
“ z I - = = 3.75
b -"52--[-":1T+e,=const=:}-l-+em, p=rT;
5 @ (Ge=B)P
H dx  ulexp[N T 3~-1)
where h= Bexp (A7577) VRiTo i N=AT;'2,
Pol
The conditions 1n the pre-combustion chamber wlll be
E:‘:O; ;:;.—:7‘: 1; ‘e_,,o-:_e—*no:'é'](exp-e-— 1), where -6=9/TQ'
Hence it 1s clear that different flows will be similar for
identical parameters A, N,x 8 and functions F(z) If one
considers flows of the same gas at the same freezing temperature
" Ty then the‘pafaméters k,N and & automatically coincide.

If in addifion we 1limlt our discussion to a family of
nozzle contours (3.63) and as the characteristic dimension we

take [=r/tg6 , then the expression for F becomes
it will not involve any additional parameters.

g v G
[

In

F=1+32

l.e.

3

this case,
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the only similitude parameter will be A (the ratio of the

time of relaxation in the precombustion chamber to the

characteristic time [YRT, . Considering that T, and

the gas composition are fixed, we conclude that the flows of the

same gas in a nozzle (3.63) at the same temperature in the pre-~

combustion éhamber TO will be identical if the combination
por/tg?d, is identical, i.e. por/tgd is the similitude para-

meter (an example of the law of binary similitude).

2. Time of relaxation When calculating 1t one must keep

in mind that, when a gas expands in a nozzle, i.e., under the
conditions when the energy is transmitted from the vibrational
to the translational degrees of freedom, the time of relaxation
may differ from its value behind shock waves when the energy is
transmitted from the translational to vibrational degrees of
freedom. This fact was established by Hurle, Russo, and Hall
(see [59]), who found that the relaxation time of vibrations
in an expanding nitrogen flow is approximately 70 times less
than the time of relaxation in a shock wave (in the early
papers the ratio of these times was found to be 1/15 [60]). To
determine TN in a nozzle the study [59] proposes the formula

2

kG
pr, (in the nozzle)=3-10""exp(18177") —35"5e€c (3.76)
* cm

One of the basic reasons underlying the difference between =t
in the nozzle and Tt in the shock wave is, according to many

workers, the influence of the anharmonic vibrations.(see, :for. -~ -.is

example, [119], [120]). In this case Eq. (3.46) becomes
generally inapplicable and should be replaced with a more com-
plicated system of kinetic equations. A number of researchers
also note the very strong effect of impurities [121]. At this
point, these questions still cannot be considgred-to be

solved.
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3. Investigation of vibrational relaxation acquires

great practilical importance in connection with the development
and creation of a gas-dynamic laser, one of those most important
elements is a non-equilibrium flow of a special gas mixture, for
example, a mixture of 002 and N2 with an inverted population of
the vibrational levels (see, for example, [121]).

Results of exact calculations and experimental data

In the case of flows of complex gas mixtures with mutually
related reactions, reliable numerical results can only be ob-
tained by making exact calculations. A majority of such flows /132

wlll not follow the simple picture that was described above. In
particular, the transitional region may not be so narrow that one
could speak of instantaneous freezing. 1In addition, there may not
exist any clearly expressed regions with qy = const. The inter-
action of relaxation processes (for example, vibrations and
dissociation) complicates the character of flow even more.

Thus far, a large number of theoretical [52-55, 61-70] and
experimental studies [41, 42, 69, 71-79] have been performed
whose results give a more detailed picture of the development of
nonequilibrium processes in the flows of air and other gas
mixtures with a fairly complicated kinetics, and which also
help 1in selectlng a more accurate kinetic model of a gas and in
explaining the effect of various factors. With a small exception,
the theoretical and-experimental results are in good mutual
agreement.

Figures 3.33 - 3.36 give data for nitrogen and air. The:
experiments were made in a hypersonic nozzle, nearly conical
with a 30° vertex angle and the diameter of the critical section
equal to 25.4 and 12.7 mm; the M number at the exit from the
nozzle was 10.
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static pressure to the
pressure in the pre-
combustion chamber for
nitrogen for pp=7 kG/cm2,

pressure behind a normal shock wave
to total pressure in the precombus-
tion chamber as a function of the
geometric ratio of areas (for

nitrogen): 1 -~ theoretical values

1l - theoretical values for an for an equilibrium flow;
equilibrium flow for ppo= 7 2 -~ theoretical values
kg/cm? and Tg= 6000 X; for an ideal gas for
theoretical values for an ideal k = 1.4; triangles

gas for k=1.4; experimental data indicate experimental
are indicated with: triangles - for data.

D=7 kg/cm2 and To= 6000 K; circles -
for p,= 35 kG/cm2 and Tp=4800 K.

Figure 3.33 [71] shows a plot of the ratio of the total
pressure behind a normal shock wave pg', to the total pressure
in the precombustion chamber (these data were used to determine
the correction for the effect of the displacement thickness of the
boundary layer and to calculate the effective ratio of the
areas (FIFJ)ess ). Measurements of the pressure pQ' shpywtpgﬁu / %33
1t is practically independent of the character of the flow:
whether it is In equili?riqm or\fro;en. In contrast with po'
the static pressure depends substantially on nonequilibrium
processes (see Figures 3.34 [71], 3.35 and 3.36 [72]).

Let us consider in more detail the development of non-
equilibrium processes in an air flow at fairly high braking
temperatures (To~6000—8000 K) . If the concentration of nitrogen
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Figure 3.36. Ratio of static
pressure in the flow to the
pressure in the precombustion
chamber as a function of the
effective ratio of nozzle

areas for the ailr for p 17.5
kG/cm2, Tgy= 7000 K, 8 75 cm.

1 - theoretical Values for
equilibrium flows;

2 - theoretical values for a
flow frozen with the values

of the parameters equal to
those in the precombustion
chamber; 3 - theoretical

values for 7 - 3 cmy; 4 - theo-
retical values for 7 - 2 cm;
dots refer to experimental data.

atoms depended only on the single dlssociation-recombination

reaction N;+M=N+4+N+M

s then one might expect that the method
of instantaneous freezing wlll give good results,

since the

recombination of N2 would occur only in triple collisions whose

number would‘fall off very rapidly with a decrease in density,

/ 134

and the rate of dissocliation would become negligible because

of the factors e—2%

However, in reality due to bimolecular

exchange reactions with the participation of nitrogen monoxide

(N+0;=NO+0 and O%N=NO+N)

the rate at which nitrogen

atoms "disappear" remains fairly high (these reactions have rela-

tively low energles of activation) and nitrogen atoms hardly
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become frozen (more precisely, the freezing does occur, but
at such low temperatures that the frozen concentration of
nitrogen will constitute a small fraction of the concentration
of nitrogen in the precombustion chamber (see Fig. 3.37 [541).

For oxygen, the picture will be different. In this case
the rates of exchange reactions, which involve oxygen-atoms,
are low due to the high energy of activation, and these reactions
cannot stop the process of oxygen freezing. The results given
in Table 11 [54] give an idea of the effect of nonequilibrium
processes in the air on the parameters of the flow in a hyper-
sonic nozzle. (The shape of the nozzle is determined by
Eq. (3.63) for 7 = 1 cm; it is assumed that the vibrational and
electron degrees of freedom are in equilibrium with the transla-

tional and rotational degrees; lonization is not considered).

TABLE 11

RATIO OF GAS DYNAMIC PARAMETERS IN A NONEQUILIBRIUM
FLOW OF AIR TO THE CORRESPONDING VALUES IN AN EQUI-
LIBRIUM FLOW AT THE SECTION, WHERE M,=u./a,=20(=1cm)¥

ToK 6000 8000
P kG/cme | 100 | 1000 100 | 1000
eslH 0,155 0,048 0,194 0,0813
PP 0,425 0,875 0,159 0,544
TT, 0,359 0,855 0,121 0,497
o/te 1,095 1,014 1,110 1,045
u/a, 0,913 0,987 0,901 0,957
M/M, 1,455 1,06 2,301 1,305

¥Commas represent decimal points

Detalled results of the calculations of the air flow in a
hypersonic nozzle for different Tg and pg are given in [55].
The shape of the nozzle was taken to be the same as in [54]. The
kinetics of the reactions differed somewhat from the one used
there. Figure 3.37, b and ¢ [55] illustrate the development of
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Figure 3.37. Distribution of the concentrations of components
during expansion of alr in a hypersonic nozzle 7 = 1 ecm (solid
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non-equilibrium processes in the flow of air through a nozzle,
depending on the variation of conditions in the precombustion

chamber.

The flow of ionized gas is one of the important cases when
the method of instantaneous freezing may lead to considerable
errors. Studies [80] and [81] show that in this case there is no
clearly expressed region of frozen flow that would be character-
1783 ¥yt eonstant-éléctron concentration (Figure 3.38, [801).

The electron concentration in the area right after the
transition region decreases smoothly, and is sufficiently well
described by the asymptotic solution in which one neglects the
equilibrium concentration of electrons as compared with the non-
equllibrium concentration. /136.

Analytic solutions

In gas dynamics of nonequilibrium flows, the analytic
soldtions are very rare. They permit us to distinguish the basic
determining parameters and on their basis to make a stricter
classification of various types of flows.

Blythe [82, 83] considered the vibrations, dissociation, and
ionization under conditions where the energy of these degrees of
freedom is much less than enthalpy. This permitted him to
separate to a first approximation the equations Sf gés'dyﬁémiégi
and kinetics, and to construct a solution whose analysis has
shown, in particular, that in this case the method of instantan-
eous freezling is not mathematically correct.

Cheng and Lee [84,85] made a detailed study of a flow with
nonequilibrium dissociation under the condition that everywhere
in the region, where the flow 1s close to equilibrium, the energy
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Figure 3.38. Electron concen- divided. into.the. following. .
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Py = 1000 kG/cm

1 = exact solutlon; 2 - solution
for equilibrium flows; 3 -~ approxi- beginning transition, 3)
mate solution by the metﬁod of region of sharp transition,
instantaneous freezing; - approxi-
mate solution by the method of and 4) reglon of recombina-
instantaneous freezing in combin- tion.

ation with an asymptotic solution

in which one neglects the equili-

equilibrium, 2) region of

brium electron concentration as It was established
compared with a nonequilibrium
concentration. that the model of instanta-

neous freezing gilves
sufficiently accurate values

h{ for the speed, specific
kE%_ 1=23 / momentum, and frozen degree
x of dissoclation o _. However
I L=2.5nn/ b ?
/;> for the temperature the
/] 5vm

1 f\?hm WS—— 54?/ solution in the region of
' / recombination will not be
0 140

30 R R A 35 %0 3 close to the exact solution
a b (one has in mind the order
Figure 3.39. Dependence of of the relative error of _
frozen enthalpy (a) and frozen the constructed solution),

adlabatic exponent (b) for the

air on reduced entropy. even though the discrepancy

from the exact solution is
numerically small.
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The study [84] also gives the conditions for freezing, 1.e.,
when @eow=0e%=0 . It is established that in nozzles whose
cross-sectional area varies as F~x* , the freezing will occur / 137

for k > 1/2.

An analysis of the freezing of the electron concentration
ng for flows in an expanding stream filament for gases with
different kinetics was made by A.V. Vasil'yeva and Yu. S. Sayasov
[86]. On the basis of the asymptotic solutions obtained, they

studied, in particular, the dependence of New on the concentra-

tion of a slightly ionized admixture Xp and showed that there
is a certain critical value of Xpo starting at which the frozen

concentration n is practically constant.

ew’

Similitude of flows in nogzzles

If we bring Equations (3.40) - (3.45) to a dimensionless
form and separate all determining dimensionless parameters, then
for complex gas mixtures there will be so many of these para-
meters that their direct use will be of little practical value.
Therefore, this method of separating dimensionless combinations
(similitude parameters) which is traditional in classical gas
dynamics, has not become very widespread as applied to non-
equilibrium flows [91].

Much more productive is the approach associated with the
search for the conditions of an approximate partial simiiitudé
and the construction of approximate correlation relations. The
so-called "entropy correlation", proposed by Bray [87], has
become most popular.

Using the example of an ideal dissociating gas, Bray has
shown that within the framework of the method of instantaneous
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freezing, the enthalpy hf and the temperature Tf at the freegzing
point should depend only on the entropy S0 and enthalpy H in the
precombustlion chamber and nozzle geometry. Furthermore, Bray
has shown that the dependence of hf and Tf on H will be very
weak, and approximately we may assume that the enthalpy and
temperature at the freezing point for a fixed nozzle are deter-
mined only by the value of the entropy in the precombustion
chamber, i.e., that

Aoy

hy=hy(So)i Ty=T4(S,). D (3.77)

Later it was shown [55] that this relation is also approxi-
mately satisfied for more complicated gas mixtures, for example
by the air, not only for hf and Tf, but also for frozen concen-
trations of individual components [88]. Auxiliary materials for
calculating the nonequilibrium flows of the air on the basis of
the entropy correlation are contained in [89] and [90].

Figures 3.39, a and b, give the values of hf and Kp for the
alr, constructed on the basis of results of [55, 88, 89]. Here
§=S/Rs, S is the specific entropy, R_ 1s the gas constant
for non-dissociated air, Re = R/Mw, where M, = 28.97. The cross-
sectional area of the nozzle was determined by (3.63). The
values of 5 in Figures 3.39, a and b were determined on the
basis of the tables by A.S. Predvotitelev, et al., [8] and [9].
These values of entropy differ from the values used when con-
structing the correlation relations in [55] and others.¥

The relationship between the values of entropy in [8, 9] and
[55, 88, 891] for the temperature and pressure ranges T< 12000 K

. L o
Foreign authors normally use the tables by Hilsenrat,
et al., and Gilmore.
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and 10<p<1000 kG/cm2 can be approximately represented by
Sis, 9= 17+ Sss, e, 09)- (3.78)

Pigure 3.40 gives the values of S versus T and P, constructed
on the basis of [8] and [9].

Basic determining parameters and approximate relations

For approximate estimates, it is advisable to use certain
parameters (characteristic variables) which reflect the total
effect of various physico-chemical processes and under certain
conditions play the role of similitude parameters.

Along with the energy parameter W and the compressibility
factor Z, which were introduced in Chapter 2, we define a para-
which relates pressure and density along a streamline in /139

meter K
2 oh (oq,)
og; \ 9 /¢

an adiabatic flow:

= m =% ! .
x,=(am)¢ | 1+ w5 (3.79)
op

Here K is the adiabatic exponent calculated under the assumption
of the local freezing of the physico-chemical processes ("frozen"
adiabatic exponent); enthalpy h is assumed given as h=h(p, p, 91, 92
.. gn) « The partial derivatives are taken at constant remaining
arguments; the subscript ¢ means that the derivative is calcu-

lated along a streamline.

By virtue of the specific features of nonequilibrium flows
in nozzles, i.e., the rapid freezing of the internal degrees of
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_ freedom, in practical calculations
4 one does not deal with the complex
;9///:/ expression (3.79), but with its
ar -
=

5
rd //,2:;(//’ asymptotic forms: with the isen-
////////,af‘//// ("effective ratio
//

troplec exponent

55;2ﬁ> of specific heat capacities")
- 2 _ra2 _(dlep
o ,P 1w-7kG/Cnl1 A= ) —(Olnp)s (see [92]) in
4 L b 7K10°

the region of an almost equili-

Figure 3.40. Reduced brium flow and at constant wvalue
entropy versus temperature

and pressure of the frozen adlabatic exponent

in the region of a frozen flow.

The quantity Ke Can be determined using thermodynamic
tables at each point of the flow field; one can also determine
the constant averaged values of Keg for a certain section of
the nozzle. As the gas expands and T decreases, T Ke will
approach k, which is the value of the isentropic exponent of
the gas under normal conditions (for diatomic gases, ko= 1.4).
At temperatures T~6000—8000 K , #.=~1,15—1,2 , and its average
value within the nozzle section from the precombustion chamber
to the section, where M = 10, may amount to 1.2-1.3.

The frozen adlabatic exponent is easily determined if we know
the concentrations of the gas mixture components

1f=2 CPiEI / ZC.,IEI. (3 . 80)

where Cp and Cv are the molar heat capacities, and §& are
molar fractions.

For gas mixtures, consisting only of monoatomic and diatomic

components
T—23¢,,

“’=5—2xe,,’ (3.802)

171



where ZXE,, is the sum of the molar fractions of all monoatomic

components. /140

For example, for the air in the absence of ionization,
Zka; = IntEo+las . Let us estimate the temperature, pressure,
and other gas dynamic parameters in a nonequilibrium (frozen)
hypersonic flow (see [123]). We assume that we know the distri-
bution of these parameters in the corresponding equilibrium
flow, i.e., in the same nozzle and for the same deceleration para-
meters, as well as the frozen energy ep and frozen adiabatic
exponent Kp (for the air, they can be approximately determined
from Figures 3.39 and 3.40). A comparison of the parameters
for the equilibrium and nonequilibrium flows will be made for the
same section of the nozzle F (and not for the same M number).

For M » 1 we have

8 =V 2 — ) = temasV T= W, oy (1~ 1), (3.81)
where
uemaX=V—271.s Wf—_—ele- (3 . 82)

Furthermore, since the gas flow rate through a nozzle only
weakly depends on nonequilibrium processes, from the condition that
the flow rates in the equilibrium and nonequilibrium flows be
equal, we get

? ~ u~___1___~1_+ﬂ.
2

_— N —

Pe ue V(I—Wj)

(If the freezing occurs in the supersonic part of the nozzle, then
the equality pu=peu. is satisfied exactly).

(3.83)
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To determine T and p, we use the concept of instantaneous
freezing, which is the same as assuming that the entropy is
constant. Let "1" denote the flow parameters at the freezing
point. Then in the region downstream of the section ¥

1
_M)_=(___P(ﬂ)’f, (3.84)
P1 . A .(
Now if we 1let ‘
) H SE IR
% - lgr. (F)~—1g p. (Fy)
¢ 180, (FY—1gp.(Fp) °’
where
pe(F1)=pl’ p,(F,)=p1,
and we can write
,P_==(_P4)", (3.84a)
P1 P1
where the subsdecript "e" refers to the parameters in the
equllibrium flow.
From Equations (3.84) and (3.84a) we obtain
PF) __(2(PY\ [pe(F) \** _ ny pe \3* (3.85)
Pe (F) (Pe(F)) ( P1 ) ~(1+ 2 W’)(:) ’
where (3.86)

A‘K =!,—;‘n

If we assume that the section in which one compares the
parameters of a nonequilibrium (frozen) and equilibrium flow
is 1n the hypersonic part of the nozzle, where Me = M, (M —

is the molecular weight of a given gas under normal conditions,)
then from Clapeyron's equation, in view of Eq. (3.85), we get

It pre g0 (14 2 w (5", (3.87)
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where Z, = Mw/Ml is the compressibility factor.

The ratio M/Me can be determined from the relation

-M_=_"_&___l/_“_&.’;z
M, e @ de p %y

Ax
A P (AL R T
~ 'v[ T ][_] ,

Pe (3.88)

where ko, is the.value of Ke for a given gas mixture under
normal conditions (for diatomic gases ke = 1.U4).

For example, for the air at T0= 8000 K, Pg = 100 kg/cmz,
M, = 20, 1=1 cm [the shape of the nozzle is given by Equation
(3.63)] and M, = 3 we have

W, =02 1, 146; Ax==0,2; r=14; pfp,= 105,

whence p/p.~0,12; T/T.~0,09 and M/M,=27 .

On the basis of these relations, one can extrapolate the
experimental and theoretical data. Thus, for example, if
p/pe)o and T/Te), are given for a certain section "2" in the
hypersonic part of the nozzle, where the temperature Te is
relatively low and *%=~%«~ , then for F > Fp we have

o= (2) (5 T (2) (%)m (3.89)
==(Zh (3
=g T |

These formulas indicate, in particular, that there is a
qualitative difference between the asymptotic (for F+«) behavior
of p/pes T/Te and M/Me in the freezing of the vibrational degrees
of freedom and the freezing of the recombination processes.
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These estimates imply that in a hypersonic nozzle the non-
equllibrium processes may have a substantial influence on the
pressure, temperature, and the M number, énd a fairly insignifi-
cant effect on the velocity and density. The veloclty head and
pressure of deceleration behind a normal shock wave also differ
very little in the equilibrium and frozen flows:

P Wy ' (3.90)
Poe petts - 2

' . C U aglsy aild gl ox susnw
More accurate estimates are given in [1232 and [124].

Pecullarities of nonequilibrium flows
near the critical section of the nozzle

The equilibrium flows and flows of ideal gases, due to their
isentropicity, have a remarkable property: the transition from
the subsonic to supersonlc velocities occurs in the most narrow
section of a stream filament. In fact, from Equations (3.40) and
(3.41) it follows that

g (1),

u F dpldp
where 1in the nozzle dufdxs<0 , and by virtue of the isentropicilty
of the flow (dp/dp),=a? . Therefore, dF/F = 0 for M = 1. This
fact greatly simplifles the calculation of such flows in super-
sonic nozzles, since the flow rate is known beforehand, and all
dimensionless gas-dynamic functions ( p/po, T/To, plpe s M number,
and others) depend on the ratio of the areas F/Fa, conditions
in the precombustion chamber, and chemical nature of the gas,
and are independent of the shape and size of the nozzle. In

particular, for an ideal gas p/po, T/To, , etc., depend only on
F/F, and «.
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Nonequilibrium flows do not possess this property. For thenm,
the state of flow in the nozzle is determined not only by the
thermodynamic properties of the gas and the ratio of the
areas F/Fy, but also by the entire prehistory of the motion,
associated with the behavior of F(x5, and the critical section
does not coincide with the most narrow section of the nozzle.
(Here the critical section i1s defined as the section where the M
number, calculated using the frozen speed of sound, is equal to

unity).

For simpllicity and ease of visualization, let us first
consider the characteristic features of nonequilibrium flows near
the critical section of a nozzle using the example of a gas with
nonequilibrium excitation of the vibrational degrees of freedom.
In this case, the full system of equations, describing a one-

dimensional flow, can be written as

puF =const; udu= —dplp; u*2+c,T + e,~=const;

dx ut

/ 143

Certain qualitative features of nonequilibrium flows can be
seen directly from the form of the equations. The difference
from the section of an ideal gas is manifested only in the
energy equation which has the form of the energy equation for
an ideal gas with an addition of heat [93]:

udu+-c,T =dQ. e one (3492)i

In such a treatment, the relaxation equation can be

viewed as an equation giving the law of heat addition:

dQ= —de..
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Eliminating p and p from (3.91), we obtain the ratio which is
valid along the stream filament

M2 —1i 1—M2 4T __ dF
T xM2R\T et M T F (3.93)
and
du dF {(x—1)de
M- ) —="0y AT )06
M= r=Ftar (3.93a)
where M has been calculated using the frozen speed of sound,
R=n4=Cp/Co . It is clear that the equalities M = 1 and 4F =

0 will be satisfied simultaneously only when de,=0

Considering that along a nozzle dex<0 , we may conclude

that the critical section will be found in the expanding part of

the nozzle, since for M - 1 we have ﬂi:u—$1%£¥gl:>d
*Ky

For flows close to equilibrium, Equations (3.92) and (3.93)
may be conveniently put in a slightly different form

udu+-c, 4T =dQ,;
Mg —1 1—M, o _a
*WMRT  ° @—1MZ T F
where

[ [ [/
dQe=deke""dek; Me=u/ae; % pe p + Cor

If the flow is in equilibrium, then e.,=e. and dQ = 0, and
M = 1 in the most narrow section of the nozzle. (In a nonequili-
brium flow, the location of the section where Mg = 1 is deter-
mined by more subtle properties of the flow; for dQ.<0 the
section where Mg = 1 will be in the narrowing part of the nozzle.)

An equation similar to (3.93a) will not be hard to obtain even
in a more general case. Assuming that the enthalpy h is given as
a function of p, p and parameters dy, We can write dh as
dh = hpdp + h, dp + Zh,,dg;. Eliminating dp, dp, and dh from this

177



equation and from the first two equations of System (3.91), and
and M=ula, , we get /144

considering that aj=—
hp—1p.

h, dg
(M2_1)_“L__d£+f2 “ o (3.94%)
u F ph’

At the critical section(M = 1), we must have

_ Dk dqidx
c A . (3.95)

Fdx ek,

The characteristic features of the fransition through the
speed of sound, and analysis of states close to equilibrium and
frozen ones, and certain problems of the theory of the flow of
a nonequilibrium gas considering friction and heat transfer, are

discussed in [64, 94-977.

Comments on the methods of calculating non-
equilibrium flows

In a nonequilibrium flow, we do not have a prior knowledge
of either the position of the critical section, or the mass flow
rate, and therefore the calculation of nonequilibrium flows in-
volves certain difficulties. Figure 3.41 shows schematically
the integral curves for Equations (3.40) - (3.45). Each curve
corresponds to a certain value of the flow rate m. Curve 1, pass-
ing through a singularity B (saddle point), represlents tHe:s" @ hie .wn'i
desired solution (m = ml). The integral curves, passing above
and below point B, correspond to subsonic and supersonic flows
in the entire nozzle. To the integral curves to the right and
left of point B there correspond nonreal regimes of flow m>m;.
Thus, to solve the problem of a supersonic flow in a nozzle,
we must basically find an integral curve 1 passing through
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the two singular points A and B (at point A, the speed of flow is
zZero).

Given a gas flow rate mq, the calculation of a nonequilibrium
flow can be basically done in the following way: since in the
initlial part of the subsonic section of the nozzle the flow 1is
arbltrarily close to equilibrium, then with the aid of the equa-
tions for an equilibrium flow one can deviate somewhat from point
A and calculate all gas dynamic parameters at a certain section 1,
where M,«1! . The values of these parameters are used as start-
ing values for the subsequent numerical integration.

In reality, the flow rate m 1s not given, and therefore in
the direct method when the shape of the nozzle 1s given and one
finds the solution, the calculation of nonequilibrium flows

N
[
4=
\J1

proceeds using the trial and error method: one is given the flow
rate m, and the equations are integrated for this m. In this
case, generally speaking, Condition (3.95) will not be satisfied.
This indicates that for a selected flow rate the flow through

a given nozzle will either be lmpossible or will be entirely sub-
sonic. We can achieve a situation where Condition (3.95) will
be satisfied by selecting m by, for example, the trial and error
method.

Usually the flow rate of a gas through a nozzle in a non-
equilibrium flow is close to the flow rate m, in an equilibrium

flow, and therefore 1t is advisable to use m_ as the starting

e
value of the flow rate when using the curve fitting method. After
one passes the critical section, the calculation of the supersonic

flow wlll not present serious difficulties.
In the case when the energy parameter is small, good results

are obtained with the method of successive approximations in which
one first calculates the gas dynamic parameters of the
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corresponding frozen or equili-
brium flow and on their basis
one calculates gg, T and q(x) to
a first approximation. Then the
values of p,p,T, Q¢ and t are
improved, and q is found to a
second approximation, ete. To
calculate the flows with non-
equilibrium excitation of vibra-

Figure 3.41. Integral curves

for Eqs. (3.40) - (3.15) tions, 1t turns out that two

approximation steps are suffi-
cient [49-51]. 1In general, the
smaller the energy parameter, the faster the convergence of

the procedure.

In practice, nonequilibrium flows in a nozzle are often calcu-
lated using a reverse method in which one is given the flow rate
and the distribution of any gas dynamic parameter along the nozzle,
and then one determines the remaining parameters and the varia-
tion of the area, F(x). Even more often one uses a combined
method of computation, where the subsonic region of flow is cal-
culated using the reverse method, and the supersonic region —

using the direct method.

If it 1s desirable that in the combined method the nozzle
contour be close to the starting contour, then it is advisable to
be given the distribution of the density or velocity as functions
that are least sensitive to nonequilibrium processes, and to take
these functions from the calculation of an equilibrium flow [54].

Pressure and temperature may also be used as the given
functions. In the latter case, for some simple gas models the
solution can be obtained analytically [97]. It is clear that
the reverse method is preferable in those cases when general
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properties of flows are being studied, and there is no need to
consider the flow in a certain nozzle given beforehand. To
overcome the difficulties involved in the calculation of
nonequilibrium flows, it 1s convenient to use special techniques
presented in [54] and [98].

Integration of equations, describing flows

close to equilibrium

The 1nclusion of the kinetic equations in the system of
equations of gas dynamics significantly complicates the calcula-
tions. Even greater difficulties arise in the case whén the flow
1s close to thermodynamic equilibrium. And this does not occur
as a result of any peculiarities of the flow field, but as a rule
as a result of the properties of the computational schemes that are
not adapted to the integration of equations of the kinetic equation
type with small parameters in front of higher derivatives. When
these equations are integrated by the usual Euler or Runge-Kutta
methods, the necessity to stabilize the computation requires that
such a small integration step be chosen that the calculation, even
using today's fast computers, is still too laborious.

.Let us consider some features of the integration of such
equations using the example of the simplest kinetic equation

4d  f@9
4 _1@n, (3.96)
where :
f(q, t) =ge(*)—gq, © = const. (3-97)

/ 146

Let us determine the error in the calculation of g when
using the simplest first-order difference scheme

fgn ¢t
qn+l=qn+‘—q_‘—")A: A=ty —1ln. (3.98)
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Let us assume that ge(t) in the initial data are known
exactly, so that the entire computational error for q will be
due to the error of the method. Letting ¢(/) denote the exact sol~
ution of Eq. (3.96), from Eq. (3.98), we obtaln

Q=qo+ q,o:-qo A=q1+0()%
Qa1 —q1 A=Ex+O(A2)+ ge

o 1—1—0@d) ,
gq2=q1+ < : A=

=32+0[A2(1+-f—)].

EICDECE B AU B R RN
i.e., the total error in the calculation of q, by Eq. (3.98) for
Alt»1 will be on the order of A%%-. Similarly, one can calcu-
late the error ej for q3, etc. For €k for example, we obtain

mofe ()

Therefore, for Airx»1 a small error in the determination of q in
the preceding step (or preceding approximation if we deal with a
more complex kinetic equation and calculate dy by the method of
successive approximations) leads to a large error in the
calculation of q in the subsequent step (next approximation).

Thus, for AlR»1 we come across a catastrophic growth of the
error, which makes the calculation according to a scheme like
(3.98) practically impossible. Here the actual solution of the
differential equation (3.96), the function q(t), may be very
smooth, for example, almost linear, and the calculation of g(t),
generally speaking, may be conducted using a very large step.

From all of the above, we can conclude that'the scheme (3.98)
is impractical for numerical integration of Equation (3.96) for

very small .

For Eq. (3.96) one can easily find a scheme which is
free from the deficiencies of Scheme (3.98). Let us consider
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the scheme

(9. 't I)
_n}_l‘:n-}- A

Gni1=dn+ S , (3.98a)

from which, in view of (3.97), we obtain
' (3.99)

9e,n+1—n . _A_

(1 + Ajv) *
This scheme, just like Bcheme (3.98), is a first-order scheme of
approximation, but in contrast with Scheme (3.98) it does not
require restrictions on the value of A/t and permits us to con-
duct the computation for A/t > 1,

Ini1=94n +

In practice, one ordinarily uses difference equations of a
higher order, and the function f(¢.H in Egq. (3.96) is not
solved for q.

If for the integration of Eq. (3.96) we use the second- 147

order difference scheme
le-l +fl
— A

% (3.100)
and in each step we conduct the calculation using the method of
successive approximations, then as one can easily see — for
example, for the case (3.97) [39] — for the convergence of the

iterative process it 1s necessary that the following condition
be satisfied

Qnv1=0n +

A<t (3.101)

Just as in the previous example, the transition to non-
explicit schemes, one can construct various stable finite-
difference schemes that do not require that the Condition (3.101) .
be satisfied. The techniques of constructing such schemes and
an analysis of the solutions of equations of type (3.96), called
"inelastic", can be found in the papers by O. N. Katskova, A. N.
Krayko, P. I. Chushkin, N.S. Galyun, V.N. Kamzolov, and
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Yu. G. Pirumov, V. P. Strulov, V. P. Shkadov, L. I. Turchak,
V. K. Dushin, Curtis and Girschfelder, Trinor, et al. [39, L0,
4”, 52, 6”, 99‘103].

On the basis of Schemes (3.98) and (3.98a), one can construct
a whole class of finite-difference schemes depending on the para-

meter u:
M:p-fi-}—(l—p) f"“; O<pc<l. (1.102)
A T L4
For y = 1 we obtain Scheme (3.98); foru= 0 - Scheme (3.98a);
for t= 1/2 - Scheme (3.100).

In the selection of the optimal finite-difference scheme,
one has to consider at least two factors: decrease of the error
in each step and making sure that the error is damped in the
initial data. A compromise solution of this problem can lead to
a selection of values of u, different from zero to one-half

0<p<'s) . An analysis of various finite-difference schemes of
the type of (3.102) from these positions is made in [52] and
[1007].

Another method, also permitting us to increase the integra-
tion step is the method of linearization relative to a known
equilibrium solution [45, 54, 104] or the method of local lineari-
zation, developed by Moretti [105,106] in which the system of
nonlinear equations of kinetics in the successive intervals is,
replaced by a system of linear‘equations which can be solved
exactly. Other methods are known, in which it is possible to
avoid the difficulties of integration of near-equilibrium
flows [107].

All these methods are quite laborious, even though, just like
the methods of constructing stable finite-difference schemes, they
permit us to considerably increase the step of integration.
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"Optimal" nozzle

As already noted, the freezing of internal degrees of free-
dom and the resulting binding of a large fraction of enthalpy
in the form of chemical energy, not transformed into the energy
of translational degrees of freedom, is accompanied by a con-
slderable decrease (as compared with equilibrium flows) of the
temperature and pressure, and a lesser decrease of the velocity
and specific momentum. However, in a number of cases even a
relatively small change in momentum may have a decisive influence
on the total characteristics of the engine, in particular on its
thrust. BSuch a situation wlll exist, for example, in the case
of air-feed jet engines [108-110]. Figure 3.42 [108] shows a
graph l1llustrating the character of the variation of thrust of
a typlcal air-feed jet engine as a function of the M number
for the flight (fuel-mixture of hydrogen and air, ratio -
stoichiometric). When M is near 11, the thrust decreases to
practically zero thanks to the freezing of the recombination / 148
processes.

In this connection, the problem arilses of optimum profiling
of the nozzle, i.e. the construction of a nozzle contour for
which thrust losses due to nonuniformity are reduced to a mini-
mum, ¥ Such a nozzle, as 1s clear from physical considerations,
should remove the freezing point of the contents farther away
and lower the value of the frozen energy. One should separately
consider two sldes of the problem: what can be obtained by the
profiling of nozzles alone (for a given size), and what is
obtained by increasing their length. Attempts to lower losses
of thrust due to lack of balance by making highly elongated
nozzles are, from the practical point of view, of 1little value

for the following reasons: on the one hand, even a considerable in-

¥ Other aspects of nozzle optimization (for example, obtain-
ing a uniform flow for a minimum length, etc.) which require

that the two-dimensional character of the flow be considered, are
not discussed here.
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crease in the dimensions of the nozzle does not have a substantial
effect on the magnitude of the frozen energy (in typical cases,
for example, an increase of the dimensions of the nozzle by a
factor of 10 results in a reduction of the frozen energy by
approximately a factor of 1.5 [55]). On the other hand, when the
length of the nozzle 1s increased, the losses due to friction
become significantly greater, so that the question of the

optimum length of the nozzle must be solved considering all
factors... Such an"analysis was made in [111]. General questions
involving the conétfﬁction of optimum contours for nonequilibrium
flows were considered in [112,113] as well as [115].

F S
//%5‘*\\\:::\\\\ Figure 3.42. Thrust of a typical
sy SO air-feed jet engine (dashed line —
: \\\ ™~ nonequilibrium flows, solid line —
«l . N equilibrium flow):
¥ ™ F — net thrust per kilogram of air
N
UI o - 4 £ M
In view of the difficulty of solving the boundary-value / 148

problem to which the problem of optimum profiling in its exact
formulation can be reduced, the numerical results were obtained
only in the one-dimensional approximation. In the case of the

flow of oxygen through an axisymmetric nozzle for the following
Initial data in the entrance section: M1= 1.1, ry= 2 cm, T1=5000 K,
p; = 100 kG/cm2, z = 1 m (length of the nozzle) and po = 0 it
turned out, for example, that for optimum, conicaii“aﬁd %%%ébolic
cbntours, 38, 25, and 20%, respectively, of the thrust difference
for tgeigguilibrium and frozen flows 1s realized [114] (see also
[116]1).

These results of course may be viewed only as estimates of
the possible gain in thrust; to obtain more accurate data, it is / 149
necessary to consider the two-dimenslional character of the flow.
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CHAPTER 4

-«

NONEQUILIBRIUM FLOW AROUND BODIES

S
—
\ ]
N

4,1 General properties and characteristics

During the flight of hypersonic aircraft in the atmosphere
of the Earth at altitudes of U40—80 km at velocities of more
than 3 km/sec, nonequilibrium becomes an important property of
the flow, since in this range of velocities and altitudes the
characteristic relaxation lengths in the shock layer are
commensurate with the size of the body and the energy — related
to the internal degrees of freedom — is great enough that the
physical-chemical processes may greatly influence these gas
dynamic parameters. Table 12 gives an idea of these values
where the altitudes H are presented at which the characteristic
width of the relaxation zone behind a direct shock wave 1is
1 cmand 1 m.¥ The table also gives the temperatures Tf and Te
in the frozen and equilibrium flows behind a shock wave.

The practical necessity of studying nonequilibrium flows
around blunt bodies is determined by the fact that the braking
trajectories in the atmosphere of the Earth of many types of
hypersonic aircraft (artificial earth satellites, hypersonic
orbital aircraft, aircraft returning from space, etc.) lie
within the altitude and velocity region where thel flow is
greatly determined by nonequilibrium processes.

* The distance at which the temperature differs by 10% from
its equilibrium values is used as the relaxation length d.
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Figure 4.1 shows typical flight trajectories of hypersonic
aircraft and the boundaries of different flow reglions in the

region d/A « 0.1 (d 1s the characteristic relaxation length be-

hind a normal shock wave,A — distance of the shock wave from
the body), the flow is close to equilibrium flow, and in the
region 4/4>10 — close to frozen flow.

Close to and above the

0.1, the nonequilibrium processes have a great
influence on the flow dynamics.

boundary d/a =

R T = SU RS A BERCN E  DPN

This chapter will investigate inviscid adiabatic flows

of gas mixtures, whose components represent reacting gases

which are thermally perfect. The equation of state

TABLE 12%

TEMPERATURE BEHIND A NORMAL SHOCK WAVE AND ALTITUDE ABOVE THE
SURFACE OF THE EARTH, WHERE THE CHARACTERISTIC RELAXATION
LENGTHS BEHIND THE NORMAI, SHOCK WAVE ARE 1 CM AND 1 M

Ve kKM/sEC | l 5 7 10
Meo \ 10,1 | 16,8 23,5 33,6
I | 4,5-109 l 12100 | 2410 | 49-109
o T.K _lr 2,7-103 ‘ 4,9-108 | 5,9-108 | 9,5.103
_ | d=1 cn 35 l 45 | 55 I 60
H xx
e | =1 & | 1 | 8 | 9

* Translator's Note: Commas represent decimal points.

Note. The M. number and temperature T were calculated for

= 70 km.
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for these mixtures has the form

RT i Y G

We shall assume that the energy equation (caloric equation
of state) may be gilven in the form

- | .

h=h(p, o, {q:>) OT h=h(T, {q,;)>)* (h.2)

The notation and more detailed expressions for h and p are
given in Section 2.1.

The system of differential equations describing the flow
of inviscid non-heat conducting, relaxing gas consists of the
continulty equation, momentum equations, energy equation,

and kinetic equations (relaxation equations)

-%‘:—+pdiv\7=0; (4.3)
Jg%"+££?bl==o; (L. )
el (4.5)
-‘%‘:F,(T, o, <gq;>) (i j=1,2,..., n) (6
Here d/dt designates the total time derivative
R Tl L (4.7)

* The form h = h (T, <q4>) is only valid for mixtures of
thermally ideal gases.
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To close system (4.3) — (4.6), we must add to it equations
(4.1) anda (4.2). Specific expressions for F; for certain
processes and notes on selecting the parameters qq are given
in Chapter 1, and Sections 3.2 and 2.1.

In practice, instead of certain equations of kinetics
(4.6), the following equations are frequently used.

Sa—1 or Se=1 (4.8)
{ i

as well as the equations expressing the conservation of atoms
of a certain type (see Chapter 1). The energy equation (4.5)
may sometimes be more conveniently written in the form -

4 (h+£)—ﬂ=o. (4.9)

dt 2 pot

from which the Bernoulli equation follows for stationary flows

h + V22 =const. (4.10)

/158

The boundary and initial conditions for nonequilibrium flows
have the same form as for ideal gas flows in the absence of
viscosity and thermal conductivity: non-flow conditions on the
body surface, and dynamic compatibility conditions at the shock
wave front, which supplement the conditions of the continuous
change in the parameters qy when passing through a shock wave.
For steady flows these conditions assume the following form.

PeoV oo =0,V 13 )
Pt PV o= pi 0V 3 !
ho+VE 2=h,+Vi/2
Vie=V.;

gio=gq; (i=1,2,...,n),

(4.11)
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where
hl=hl(Tl’ qloo’ q2°°)-'.'1 qnco)-

If certaln degrees of freedom are excited in a uniform manner,
the expression for the enthalpy hl assumes the form

hi=h(T, qioo Goer-++1 Grer Qtt1 sy Jneo)s (4.12)

where Q1e, 9pge++s Qe are the parameters which describe the
3
degrees of freedom which are in equilibrium, A4~ qie(Tl,.pl)

When a nonequilibrium flow passes around a body, an impor-
tant role is played by the relaxation parameter T which equals
the ratio of the characteristic relaxation time to the
characteristic gas dynamic time tc H

=Tt (4.13)

This parameter characterizes the relative rate at which the
equilibrium is established in the flow. If we have the follow-

ing in the entire flow region being examined
- (4.14)

T~1

we shall call this flow essentially nonequilibrium flow. If
T 1, (4.15)
then it is close to frozen flow, and if

T, (4.16)
it will be close to equilibrium flow.
However, as a rule, in the problems of flow around bodies
striving to the corresponding limiting states (T = 0 and 7= o)

is non-uniform, i.e., there are different types of layers,
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regions ("lines" "surfaces", " points ") where the flow parameters

/159

greatly differ from their values in frozen and equilibrium flows.
These are typlcal examples of flows with singular perturbations.
Some of these layers, which are usually called relaxation, entropy
or vortex layers, have a great deal in common with a viscous

boundary layer.

In the cases of T «1 or t > 1 the primary influence of
nonequilibrium Is, as a rule, localized in these singular regions.
The parameters of these regions are the relaxation layer behind
the shock wave, in which the flow parameters asymptotically
strive to their equilibrium values, the relaxation entropy
layers close to the surface of a blunt and pointed body,
etc. These layers will be described in greater detail in an ex-
amination of flows around a wedge, a cone, a blunt body, etc.

In many cases, in the case of flow around bodies, the
region T~1 will comprise a comparatively small portion of the
entire shock 1layer region, and thus in a large portion of it
the flow will be eilither close to equilibrium flow or close to
frozen flow. Those flows which are frozen in certain regions
(usually they are called simply "frozen'", although it is more
correct to call them "freezing") represent a special example of
flows which differ greatly from similar equilibrium flows and

flows of an ideal gas.

The influence of nonequilibrium processes on the flow
dynamics is determined by many factors which characterize the
thermodynamics and kinetic properties of a medium, the flow
regimes, geometry of the body, etec. If we attempt to find
all of the dimensionless parameters which determine the flow,
then for complex gas mixtures a more cumbersome system 1is
obtained for these parameters than in the case examined above
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of one-dimensional flows (see Section 3.2). Therefore, in
problems of flow around bodies,methods are of great importance
which are based on utilizing certain parameters (characteristic
values) which play the role of parameters of approximate,
particular similarity and which synthesize in themselves the

basic relationships which reveal the influence of physico-chemi-
cal processes on the gas dynamic characteristics. These parameters

may include universal parameters which are common for many

classes of flows — for example, the energy parameter Wi_gpgwﬂL!
compressibility factor Z, and the parameter n::(%%f)w (for
more details, see Section 3.2) — and particular parameters

which pertaln to individual types of flows, for example, the
parameter of the effective compression in a shock layer around
blunt bodies, etc. (See Section 4.6). In the flow field of an
l1deal gas, these parameters are constant (W=0, Z=1, n.=const=cp/cy) »
In an equilibrium flow, they are functions of the state. In a
nonequilibrium flow, they are determined to a significant

extent by the kinetic properties of the medium and the flow
configuration, and they greatly differ from the values of these
parameters in equilibrium and frozen flows.

It is sometimes assumed, when determining the influence
of nonequilibrium processes on flow dynamics, that the values
of the gas dynamic parameters in a real nonequilibrium flow
wlll lie in the region between their values in equilibrium and
frozen flows. In some cases, this assumption makes it possible
to establish the boundaries between which the parameters of
nonequilibrium flows are located. However, this is not always
the case. One example may be the flow around blunt cylinders
and plates, when thermodynamic equilibrium is rapidly established
close to the front of the front shock wave (in the region where
the wave 1is close to a normal wave), and then there is a sharp
freezing of the physico-chemical processes as the flow expands.
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The necessity of taking into account nonequilibrium
processes greatly complicates the mathematical description
of the flows. The simple formulas which are frequently encounter-
ed in classical gas dynamics are almost completely lacking here.
Even in those rare cases where analytical solutions can be
obtained, it is difficult to analyze them, as a rule, due to the
cumbersome nature of the expressions. Therefore, a knowledge of
the basic characteristics of nonequilibrium flows should be
obtained with the.simplest. medels of nonequilibrium media, resort-
ing to a qualltative analysis and approximate estimates in order
to avoid cumbersome formulas and algorithms. Only the final re-
sults will be given for flows with complex kinetics. The
interesting details of the calculations may be found in the
original articles and specilal handbooks. We should now stress
the fact that in the majority of cases, reliable quantitative
results may only be obtained on the basis of precise numerical
methods, with adequate allowance for the kinetic properties of

the medium.

4.2 Laws of similarity in the case of hypersonic flow

around slender bodies.

Let us examine hypersonic flow around slender bodies, when
the perturbations introduced by the bodies into the flow are
small (small as compared with the velocity head — for pressure,
and the velocity of unperturbed flow — for velocity). In this
case, the method of small perturbationsis an effective method
for solving the problems of gas dynamics for flows of an ideal
gas and a gas in a state of thermodynamic equilibrium. The
results obtained by this method, particularly the law of plane
cross-sections (the principle of equivalence with unsteady
flow considering a small number of measurements) and the
" law of similarity represent a very powerful method for an
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experimental and theoretical investligation of hypersonic flows
(for more details, see [1, 2, 3]).

The question then arises as to the extent to which these

N

results may be applied to nonequilibrium flows.

The law of plane cross sections, and its generalization
to the case of slender bodles at large angles of
attack, given by the V. V. Sychev [4], and also the law of
similarity which follows from thls, remain in force for non-
equilibrium flows. Physlcally, this 1s apparent, since the
decisive characteristic which lies at the basis of the law of
plane cross sections, is the approximate constancy of the gas
veloclity component along the body axis (which makes it possible
to examine the flow in transverse cross sections). This
characteristic 1s satisfied for slender bodies which move at
hypersonic velocities, independently of the specific form of
equation of state and the velocities of the physico-chemical
processes.

It follows from a rigorous mathematical proof, which we shall
not give here, that the error of the law of plane cross sections
for nonequilibrium flows, just as in the classical case, will
be on the order of 82 (9 — is a small parameter which characteri-
zes the maximum angle of deviation of the velocity vector; the
relative body thickness may be used as ¢ for steady flows).

Thus, 1n the case of nonequilibrium flows, if we dlsregard
terms on the order of 9?2 as compared with unity, we arrive at
the equations of the small perturbation method, which represent
the exact equations for the corresponding unsteady flow
in a plane. In essence, these equations are just as complex as
the initial equations of stationary flows, and there are still
no examples of theilr solutions obtalned without any additional
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simplifying assumptions. One assumption which simplifies the
problem, in particular, may be the condition ¢ « 1, where ¢
is the ratio of the.density in the unperturbed flow p« to the

density behind the shock wave (for an ideal gas e==1£%).
*

The methods for calculating such flows and the bibliographic
references may be found, for example, in [1 and 2].

By means of the combined method based on the concurrent
application of the law of plane cross sections and the method
of the "thin shock layer" in [5], for example, a solution is
given for the problems of the flow of gas with relaxation of
vibrational degrees of freedom around a thin wedge and cone.

The solution is given in a form which is customary for
thls method, for example

p=p1+epa+epat ..
p=rife+p2t+epst ...

etc. In the first approximation, the solution does not
depend on the vibrational energy and is the same as for an ideal
gas. A term caused by the nonequilibrium is not included in the
solution of the second approximation for the pressure P> and the
axial velocity component Us . This means that p and u in this

case are least sensitive to the influence of relaxation pro-

cesses. One feature of the expression p3 for a wedge and a

cone lies in the fact that the pressure — 1in contrast, for example,
to the density — changes in a non-monotonic manner in the

- PN

relaxation process from a frozen state to an equilibr{uﬁ sééfé.
' /162

Let us now turn to the law of similarity for hypersonic
flow around slender bodies. This law follows from the equations
of the small perturbation method, and it may be regarded as a
direct result of the law of plane cross sections. The functional

208




cp oy .
_BES

dependence of gas dynamic parameters for steady flow
around bodies, whose surface may be described by the following
equation in a Cartesian (x, y, z) coordinate system connected
with the body '

f(axv Y, z)=0 (14.17)

(a family of affinely similar bodies) has the form

p::pr,y,z;Vmﬁ,am,pw”fmyq , UQQ:%QQ,‘S,

Vool PN

where o is the angle of attack.

Similar expressions exist for the remaining gas dynamic
functions and the aerodynamic coefficients, for example

¢, =92F (Vd, L3, 0/, po, Teo)®. (4.19)

For slender, three-dimensional bodies located in a flow at
a large angle of attack, the parameters V,s and a/y may be
replaced by their generalized form V,sin o and ¢ ctg o [4].
When there is slight blunting, one similarity parameter appears

he=c (d/L)F/9H, (4.20)

where c£ is the ezfective bluntness drag coefficient¥*¥;

d — characteristic bluntness dimension (thickness); j = 0 in the
plane case and j = 1 in the axisymmetric case. (For more details
see [1], Chapter V, or [2], Chapter II).

* Here, in the calculation of c_, the force pertains to the
body area. y

**  For calculation of c/! see, for example, [3, 6, 7.
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Relationship (4.18) represents a very general form follow-
ing from the law of plane cross sections, and is only wvalid
to the same extent that the law of plane cross sections is wvalid.
Therefore, it may be applied both for an ideal gas and for a real
gas in the case of equilibrium and nonequilibrium physico-chemical

processes. -

Attention should be called to the following two factors:

I. Formula (4.18) is only valid for one and the same medium
with its individual thermochemical and kinetic properties. In the
case of an ideal gas with constant heat capacity, the individual
nature of the medium is characterized by a single parameter
k. The possibility of simulation in this case is extended not only
to dimensions, form of the bodies, and velocity V,, but also to

the medium.

In the general case, the possibilify of simulating the
media is excluded. The possibility only arises for gases, whose
equation of state and equation of kinetics have certain special
(self-modeling) properties which allow similarity. For example, éléi,
an ideal dissociating gas has such properties. The right to
simulate a medium must be "paid for" by a large number of new
similarity parameters (in the general case not only physical
processes, but also the state of the unperturbed flow must be
simulated. For more details, see, for example, [6]).

For certain simple gas models, the law of similarity may
assume a simple form in the case of nonequilibrium flows. For
example, for the model of vibrational relaxation which is
characterized by the condition

cx=const and t=const,
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relationship (4.18) assumes the form

V= .","a)
L %)

p=r (ﬁx, Yy 23 # CulCh Mad,

As compared with the case of an ideal gas, only two new
similarity parameters occur here cenlcp and  Vet/L . (In this
example, the similarity is extended to the medium, i.e. the
requirements that it is necessary to have one and the same
gas in order to observe the similarity is elimihated here.) -

II. The second comment pertalns to the invariance of the
equations when the linear scales are changed, 1.e., the possi-
bility of a geometrically similar transformation of the models
with a change in theilr dimensions.

The equations of motion for ideal or equilibrium gases
assume such a transformation in the absence of viscosity. This
transformation is not possible in the case of dissipative processes,
for example, caused by viscosity or nonequilibrium. This is due to
the appearance of new dimensional quantities in the equations of
gas dynamics and kinetics (in the case of nonequilibrium flows,
the characteristic relaxation times are such quantities), from

which we may form the dimensionless combinations F10Veo

i.e.
f#?ﬁ(h=12“,g -similarity parameters (4.21)
In the general case, for similar flows the guantities T40
must be the same, since they are determined by the density,
temperature and initial values of the parameters ay - Therefore
the ratio Vo/L must be identical for such flows, and since Vgd
is the similarity parameter, this means that in the general

case of nonequilibrium flows, which obey the functional law (4.18),
the value of Ly must also be identical, i.e., / 164
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L & - similarity parameter (4.22)

Condition (4.22) means that in the general case of arbi-
trary nonequilibrium flows the affine similarity transformation
must be accompanied by the necessary condition of conservation
of transverse body dimensions (L g characterizes the transverse

dimension of the body).

Thus, in the general case of an arbitrary medium with non-
equilibrium processes, the requirements of the hypersonic simil-
arity law are not very exacting for varying certain parameters
in model experiments or in comparing different flows.

Much greater practical advantages may be obtained from the
similarity law 1n certain special cases or in the case of its
approximate application. Thus, the number of similarity
parameters 1s reduced, and, in the place of o0ld parameters,
certain new similarity parameters appear which make it possible
to expand the simulation possibilities. For example, for pure
two-atomlc gases which dissociate according to the scheme
Ay + B2 ¥ 2 AB, i.e., when the forward and inverse reactions
are binary (see Section 1.3), the gas equilibrium composition
does not depend on pressure (density), and is always determined
by temperature. Therefore, the density p. may be excluded frcm

the number of declisive parameters.

The relaxation time 't in gases in the case of ‘such binary
=IO

P
Taking this relationship into account and utilizing the basic

condition (4.21) of the constancy of the parameter 1V /L, for

processes 1s inversely proportional to the density =

binary processes, instead of two similarity parameters L& gng pw;

Pool
V 3

ioe-

we obtain one similarity parameter po L& or
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PL&(orféi)— similarity parameter (4.23)

bl for binary processes.

Similarly, for three-molecular reactions (reactions of the
third order), the combination 02 Ly could be the similarity
parameter, etc.

In practice, gases are most frequently encountered which
dissociate according to the scheme AB+ M T A+ B+ M, 1. e.,
the forward reaction (dissociation) is of the second order
and the inverse reaction (recombination) is of the third order.
If recombination reactions can be disregarded in flows of these
gases, the law of binary similarity poL = const will be satilsfied
in these cases, although it is only approximately true. (The
degree to which this law 1is approximated is usually verified
by computations or experimentally). These gases include nitro-
gen, oxygen and air when the flow is far from an equilibrium
flow. The applications of the binary similarity law will be
discussed in greater detail in Section 4.6.

In conclusion, Table 13 shows the use of similarity laws
in the case of flows around slender affinely similar bodies
at small angles of attack. (See Table 13 on Page 214).

4.3 Noneguilibrium flows around a wedge and cone

Let us now turn to specific examples of flows, when
the influence of nonequilibrium processes 1s apparent 1in the
" purest " form. Let us examine supersonic flow around a
wedge with an attached shock wave. The unperturbed flow may
be both an equilibrium flow (Qw = qew)anda nonequilibrium flow
(ae # qem). (The latter 1s typical for experiments in hypersonic
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TABLE 13

Characteristics Ideal Arbitrary gas infArbitrary non-{ Nonequilibrium gas,
of medium gas equilibrium equilibrium | obeying condition
state gas of binary similar-
ity
a
Similarity R L Veod, L9, |Vaod, °VL¢
a oo
parameters cd/Ly T\ b T, g b Tl o
=T i s 0, - |¥TT°7 / 165

Possibility of | Possible Impossible (only possible in certain cases,
medium simula- . for example, for an ideal dissociating gas,
tion and also in the case of partial simulation)
Possibility of [Possible Possible Impossible Only possible
changing linear when condition
scales of models Qo L #=const
retaining geo- is satisfied
metric similarity
Similarity para- a a ' Cl

° a Veol, L8, Vb, .
meters in limiting g A Voo, P a Voo
case of flow with A 0 Y A 0 i' A
very strong impact 8
waves (M3 >» 1 l

wind tunnels).

Let us select the characteristic relaxation length behind
the shock wave UpTp @8 the basic length scale (u i1s the velocity
component along the wedge surface and the index "f" corresponds

to frozen flow Tf='t(pv, Tf).

At distances r<us; from the wedge apex (Region 1 in Figure
4,2), the flow will be close to frozen flow; in particular, /166
the shock wave inclination ¢ will equal Op — the angle of

shock wave inclination in frozen flow.
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It is apparent that far from the wedge apex (in the scale
ufrf), independent of the local flow structure in Region 1
and in regions adjacent to it with the characteristic transverse
dimension U, Ty the angle of the shock wave inclination will be
similar to, and in the limit, equal O — the angle of the
shock wave inclination in equilibrium flow. Region 2 of
nonequilibrium flow (relaxation layer) is adjacent to the shock
wave. The width of this region will be on the order of
urrysin(o.—@) - In Region 3, which is far from both the shock
wave and the wedge surface, the flow will be close to equilibrium
flow, just as behind an oblique shock with the angle of
inclination Og-

In Region 4, which is adjacent to the wedge surface, the
pressure far from its apex must be the same as 1n Region 3,
but it is not necessary that all the remaining flow parameters
equal their values in Region 3 since, in the first place, the
initial conditions in Regions 3 and 4 are different (different
inclinations of the shock wave) and, in the second place, the
entropy increases along the streamlines in these regions will
also be different, since, for example, the laws governing the
change in the transverse cross section of the streamtubes will
be different.

The existence of these regions (layers) was first noted by
V. N. Zhigulev [8], and later by several other authors [9, 10].
These layers are usually called relaxation entropy layers, al-
though the term "entropy" may possibly not be felicitous, since
it is usually associated with flows with very large relative
changes 1in entropy, and in such layers the relative entropy
change 1s small, as will be seen later. Therefore, it has been
proposed [3] that these layers be called weak vorticity layers.
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Let us establish the relative changes in temperature T, / 167

density p, velocity u, and entropy S in a relaxation entropy
layer for flows, which are characterized by relatively small
energy parameters W. The index "3" designates that the term be-
longs to Region 3, and the index w characterizes the parameters
on the wedge surface far from its apex (both states are equili-
brium states). Since the jet stream adjacent to the wedge sur-
face passes through the shock wave at the angle of inclination
Tps Sw equals Se(of) — entropy in an equilibrium flow during
the transition through an oblique shock wave at the angle

Op plus a certain addition related to the fact that the law
governing the change in the jet stream transverse cross section
close to the wedge surface differs from the law governing the
change in the jet stream in a flow with an infinite obligue
shock wave with the angle of inclination g However, calcu-
lations show that if the relative change in the jet stream

F i1s small (this is related to the small value of the parameter
W), then in the first approximation such small variations in the
area are not apparent in the entropy increase and S,=S.(oy) .

Thus
8S = Sw'_ SS=Se (cf) - Se (se)v

where oS is the entropy change along the layer.

The quantities 8T, dp and Su are expressed by 6S. Let us
determine these values for the case of a slender wedge in a
hypersonic gas stream with nonequilibrium excitation of the
vibrational degrees of freedom. We shall assume that-ii <} PR

3L K=o > 1. (4.24)
In this case, the internal gas energy is a function only of

the temperature and since pw=ps a To—T3<T; (due to the smallness
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of W), we have
T,

BS=cV1nﬂL/_p3_+S‘v ar Pw—P3 (4,25)

4 —_ = —%C
Ve v
(Pwlpa)” T P3

Carrying out the calculations within an accuracy of terms

of the order AW, where

AW =T — Creo (4.26)

)
4 pra

we obtain e ey

p3 =~(,,+.l) W (L.27)

ug - %41

If the unperturbed flow is in a state of equilibrium, then
0<:AW<Z}—:):-==."__N_"1 . Therefore, for flows with vibratory relaxation,
the relative drops in density, temperature, and velocity in the
relaxation entropy layer are small. The density and velocity

decrease across the relaxation entropy layer in the direction

of the wall, and the temperature increases.

Let us establish the characteristic width of this layer,
i.e., the distance .in the direction perpendicular to the wedge
surface, at which the gquantity P3P, will be on the order of
PP, We shall use the fact that the characteristic relaxatiocn
length is on the order of d = UpTp- It follows from this that
the characteristic distance 7 along the shock wave from the
wedge apex, at which there is a change in the angle of inclina-
tion for the shock wave from Op to Ogs 18 determined by the
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intersection with the shock wave of characteristics drawn from
the region on the wedge surface, located at a distance on the
order of d from its apex. Knowling the angles Ops de and the

number M. behind the shock wave (when M, > 1 the value

1
hy:?gi/r;a%jﬁ ), we may determine the characteristic thickness

of the relaxation layer o (Figure 4.3).

We have sz2 8, a=E=3]/z(t2 1)’

—a— b w_—n_:_l). B DR
B=a—17 (1/2 > i 5’8 la~8

(the notation is given in Figure 4.3), and thus

1

P~ ’~ (‘:
~3d = Ul

-V
where
e—2—1 (4.28)
241

It may be approximately assumed that the law governing the /169
change in the flow parameters across the layer 1s exponential,

namely

p= P3Py — py) €01 = py (1 Spev). (h.29)

The basic characteristics described above will be repeated
in other nonequilibrium flows. Naturally, these determinations
give only a very general representation of the characteristics

of nonequilibrium flows around pointed bodies.
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The flow characteristics of a relaxing gas around pointed
bodies are greatly clarified by a solution of the problem regard-
ing the flow of gas around a wedge with nonequilibrium excitation

.of the vibrational degrees of freedom, which was obtained by
V. N. Zhigulev [8] by linearization according to the small
parameter#¥

W,=e,(T))c,Ty (4.30)

The basic solution with which the linearization was carried

out was the solution for the flow of an ideal gas around a wedge
in the case of frozen vibrational degrees of freedom (the index

ey, This solution, which changes into an exact solution when

Wl + 0, 1In the (x, y) Cartesian coordinate system (see Figure

4.2, E=xfupy, j=yluyy) may be written in the form

P—py
W;p/u}

41 le_xm +2 Z(—s)i e ch (Pym')]}

;= =A{fg'r(1_e—;+;ctg1)_v+
;———' 'v]“’/,ujz — A [e—?+'3ctg 7+e—;-“—!/ _

~2 3 (—sye=Fn'sh (uym") |
=1

]_ (4.31)

#¥If the advancing flow is nonequilibrium flow, i.e., exo+0
then the method and the solution are the same as before. In this
case, the small parameter will not be w, , but AW=w,—w., where
F-=n-h,n An analysis of this case is given by A. V. Chirikhin

11]~
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- u—u —
u= =F(y)—p;
WIUf .
- l+ktgy 1
Flpy=—""El ———
B (1—p2ig2y
X [_Py+e~ﬁctz = -2 E (—s) e—-i(ctmml]; (4.31)
i1
= T—7 21— - -
T=S =@x—1)M;(p—F(y)) —exn
- p—er - =
p—_:—————le ——T;
Wies 74
e —— %k 1__e—x+7ctgy
AREET IR S e”' chpr 1—e : J
Here
A= gy ;s:l~mv;m=}~uw7
1—tg2yp2 ild+wvy - 7 14ptgys
v Zectgy—(1—¢) (x— l)Misinxcos‘r (4-32)

=M (sin2y +ecos2y) — 1 + cctg?y— (x— 1)M2’
b 2e—(1—¢) (x— 1) M7 sin27y
sz(l——s) sin2y—1-—¢

M E=Poo/Pf-

It may be readily established that when x + « and for
finite y, the quantity p strives to a constant limit

Do BT VIEY (4.33)

The expression for F(y) shows that there is a vortex 1ayer
close to the wedge surface whose thickness is on the order of

the characteristic relaxation length UpTp- With an increase in

the M_'number, the layer thickness decreases. An analysis of
expressions (4.31) confirms the flow picture which was described

at the beginning of the section (Figure 4.4).
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The pressure only changes in the relaxation layer zone
behind the shock wave. In the case of large X, the remaining
values remain functions only of y, and outside of the relaxation,
boundary entropy layer the flow is practically uniform.

Figure 4.5 gives graphs of the normalized pressure increase

(p - pf)/wlpf along the wedge surface for x = 1.4. We should

note that the dependence of p - Pps U = Up and o - Op (which is

close to a linear dependence) on the paraméter W will only hold
for very small values of W. With an increase in W (here we have
in mind the more energetic processes: dissociation, etc.), there
is a very rapid slow down of the increase and of stabilization

P = Pps U — Up, a8 well as the angle of inclination of the shock

wave 0. Thus, p, u, and o greatly differ from T and p, for

which there is no such stabilization.

In order to obtain precise quantitative results, even in the
simplest cases of a wedge and a cone, we must turn to numerical
computational methods. The results obtained by the method of
characteristics for nitrogen with vibrational relaxation, an
ideally dissociating gas, and air, as well as a discussion of
certain methods of calculating supersonic nonequilibrium flows

may be found in [9 — 25].

The distribution of the gasdynamic parameters in the flow /172

field around a cone 1s just the same as around a wedge, with the
exception of a decrease of the thickness of the relaxation entropy
layer with an increase in x, and the effect of "re-expansion" of
the flow, close to which the pressure strives to its asymptotic’
value nonmonotonically (Figure 4.6) [13] (compare with the dis-
tribution of p in the case of flow around a wedge for small

angles ¢, Figure 4.5a). The change in T and p along the surface
of the wedge and the cone in air is shown in Figure 4.7 [15].
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Figure 4.6. Pressure distribution
along cone surface 1n a stream of
nitrogen with vibratory nonequili-
brium when ¢ = U6.4°; M,= 12; Tw = 300K
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Figure 4.7. Temperature change (a) and density change (b)
along wedge surface ( dashed line,? = 41,04°)
and dlong a cone (solid line & = 55.H3°) in air
(vibrations are balanced) when V. = 6638 m/sec:
the dotted lines designate the asymptotic values when

X'*on-
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Figure 4.8 [15] gives data which show that, when an air
stream passes around a wedge, the binary law of similarity is
valid in the major portion of the flow field. 1In spite of the
fact that the pressure on the wedge and the cone depends slightly
on nonequilibrium processes, in certain cases their influence
may be considerable. For example, the aerodynamic characteris- /173

tics of the wedge C; and mg, and the position of the pressure
center Xp, may fall outside of the limits within which they

change in equilibrium and frozen flows [26, 27]. The displace-
ment of Xp is connected exclusively with the influernce of non-

equilibrium, and in certain cases may be on the order of one

percent of the wedge length.

4.4, Characteristics of the propagation of small /174
perturbations in a relaxing medium. Notes on
methods of calculating nonequilibrium flows

around slender pointed bodies

In addition to the method of characteristics and other
similar computational methods, other methods, which were devel-
oped for ideal gas flows, are widely used in the gas dynamics of
nonequilibrium flows. 1In particular, this pertains to the line-
arization method based on the smallness of perturbations of the
basic homogeneous flow. The problem of the propagation of sound

is a classical example [28 — 33].

LN A L R . L N R N R -~ -

Let us consider a plane, monochromatic sonic wave propagated
in a fixed medium, which is characterized by a single relaxation
parameter q. Let us represent p, p, etc., in the wave in the
form of a constant term corresponding to the state of the

unperturbed medium, and a small perturbation: p = Py + p',
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p=1py % pP's @ = qy + q', and u = uy + u' = u'.

Taking the fact into account that h(p, p, q) = h0 + hpp' +

' ' = LIS t i . —
hpp + hqq and ag a, + q qepp , from Equations (4.1)

epp
(4.6) we obtain a system of linear homogeneous equations with
respect to the small quantities u', p', p', and q' [Equation
(4.6) is taken in the form of (3.59)]. The time t and the coor-
dinate x are the independent variables. If we search for the

solution in the form p=pgEl®**), g =ge!tet+*0), ete., where pol’ qO"

etc., are constants, as a result of substituting these expres-
sions in the system of linear equations obtained, we obtain a
system of linear homogeneous algebraic equations with respect to
the amplitudes po', qo', etc., which has a nontrivial solution

only if its determinant A equals zero.

Equating A to zero, we obtain the following relationship,

which connects w and k

° —hp(l+lmt)—hqqep ) (4.35)

o 1
(hp - T) (1 + io%) + hygep

A1l the terms in the right side of this equation are calcu-

lated by definition in an unpertfurbed state, for example, hp =

ok +P0>
% (Pobod)) It may be seen from (4.35) that when 7 # 0 and

dp 4
T # », the ratio w?/k? represents a complex quantity, and since

w is a real quantity, the wave number k must be a complex number.
Representing k in the form k = kl - k2 (kl, k2 > 0) and
setting w/k1 = a, we obtain

X
p = P:Jela(’_?) e~ hx yr u&elm (‘— %') e—Fkax
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ete. It may be seen from these expressions that the quantity a,
which equals w/kl, is the phase velocity of sound in terms of

its physical meaning, and k2 is the absorbtion coefficient. 1In

the limiting cases of high frequency (wtr + «) and low frequency
(wt + 0) sonic vibrations, the expressions for the speed of

sound assume the form (2.52) and (2.53).

If the state of the gas depends on several parameters ds»

then
og
k _hl’&thl oel ._7;
aj= — - al= ‘ =, (4.36)
hp—llp A —Zh (_9& _l_ Z-__l_ ¢
P e T e
where
B(p, p)=h(p, s (gei(ps p)))-
It may be shown that these expressions are identical to the /175

relations

In the general case, when the parameter wt is a finite
quantity and does not equal zero, the phase velocity of sound a
and the absorbtion coefficient k2 depend on the frequency w.

ra * P LI . -

When wt » 1, we obtalin the following from Expressions (4.35)
and (4.36)

a2—-a2e 1 Ll.‘
a=a/ll+ 0@ k=~ o 1402 (4.37)
J
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where

2
t=(w1)" 1, t=x % P ~ 1. (4.38)
; 2 b+ kg
y Ve Tdlep

Thus, the rate at which sonic perturbations of the frequency
w are propagated when wt » 1 in the first approximation equals
the frozen speed of sound 2ps and -the absorbtion coefficient k2

is inversely probortional to T and does not depend on the fre-
quency.

When wt < 1,

a2_ 2 w2t
@ =g, (1+ 0 [(w3)2]); kz=’Ta' (140 [97), (4.39)

i.e., a = ae, and the coefficient k2 is proportional to w?t. It

follows from these relationships that at a distance which equals
the characteristic relaxation length 4 = BpT, the nature of the

sound absorbtion varies, depending on the value of wrt.

High frequency perturbations (wt -+ «) are absorbed most

2 __ 2
rapidly: ky::ij;i; low frequency perturbations (wt »+ 0) are
24

s

propagated practically without damping.¥* This is a very impor-
tant result. It enables us to understand the law governing the
propagation of small perturbations in the supersonic flow of a
relaxing gas. If the perturbation may be represented in the form
of a Fourier series (integral), then the high-frequency harmonics
d, use is made of the parameter

¥Sometimes, instead of k

2
kzl — the absorbtion coefficient at a distance equal to the
wavelength A: kA=naott{l+ (et*)]-'(1+ O(a)), a=(a2—a2)/a,2 + The quantity kzx

when wt - 0 and wt + « strives to zero and has a maximum when
wt = 1.
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(a Mach cone with the largest angle opening corresponds to them)
are damped most rapidly, and the low frequency harmonics, which

are grouped around a cone with the angle arcsin (ae/Uw), are

damped most slowly. Distortion of the signal thus occurs.

If it is assumed that the perturbation source (profile, etc.)
lies on the y = 0 axis, then the perturbation passing from it to
a certain point (x, y) is comprised of perturbations which arise
at different points of the y = 0 axis, and thus the aVefagéa
value of the initial perturbation is transmitted to the point

(x, y).

Interesting results in the study of the general properties

of the linear equation

3 92 9% 9%
dy— (M —1 - —
5, [( Jo 1) ox2  oy? 022]+ (4.40)

a2 02 02

2 ? ? 3

+(M¢ _1)—_2___2_ ._2_0’
bt dx oy 0z

where

M/w= w/a,m; I“eoe——'_Ucalaeoo; dm'=U°°‘t+,

were obtained when solving several specific problems by Ye. V.
Stupochenko and I. P. Stakhanov [34 — 37], and also Chu, Clarke,
and Vincenti [32, 33, 38 — 40].

N Rt

The Laplace transfofm is usually used to solve Equation
(4.40), and the problem is essentially reduced to finding the
inverse of the Laplace transform. As a rule, the solution has
a rather cumbersome form, but the fact that it is represented in
an analytical form makes it possible to study comparatively
easily the flow characteristics, particularly its asymptotic

behavior.
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Figure 4.9. Change in
temperature of active
(T) and internal (T, )
degrees of freedom
across shock layer for
the two-dimensional
problem (self-modeling
solution).

Figure U4.10. Diagram of flow around convex corner. (Solid
line - first frozen line of perturbations; dot
dash line - first equilibrium line of pertur-
bations; dashed line - closed characteristic
of the first family in a rarefaction fan):

1,2,3 - streamlines; I - region of slightly eddy-

ing flow; II - relaxation region; III - region
of Prandtl-Meyer equilibrium flow.
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The studies [41 — 53] were devoted to investigating
different steady and unsteady flows in the case of one or
several nonequilibrium processes. Attention should be called to
the modification of the linear theory proposed by A. N. Krayko
and R. A. Tkalenko [54]. The modification consists of changing
to new dependent and independent variables, so that in these
variables'the coefficients in the precise equations subject to
linearization become slowly changing functions of the unknown
.quantities. This greatly widens the possibilities of using the

linear theory.

The solutions of different self-modeling problems occupy an
important position in classicial gas dynamics. These problems
represent a rare exception for nonequilibrium flows due to the
appearance of several new dimensional constants. Let us discuss
one class of one-dimensional unsteady motions of a relaxing
gas which occurs when the energy equation and the relaxation

equation have the form

ar; T —T,
e-—cVT-i-ch. at = - y

where Cys Cy and 1 are constants.
i

For such a gas model, the system of equations of gas dynamics
and the conditions on the shock wave when p, = 0 assume the
following class of self-modeling motions, found by V. N. Zhigulev

p~eG@E); p~eCHNIP (4.141)
s~V @y T~eMHE, Ti~e™H(®),
where the self-modeling variable & is proportional to re_kt (r —
coordinate, C and k — constants). In particular, this class of
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motions includes the motion of a gas expelled by a piston

according to the exponential law u, = uoekt, - < § < oo ug =

const (in this case C = 0).

The study [55] investigated a system of ordinary differen-
tial equations, and gave the results of calculating u, p, p, T,

and Ti for planar and axisymmetric motions. By way of an example,

Figure 4.9 gives the temperature distribution across the shock

layer for different values of the parameter T = kT (two- - /177
dimensional problem). According to the hypersonic law of plane

ecross sections, these results may be used to analyze the flow

around certain planar and axisymmetric bodies.

4.5. Supersonic flow past a convex corner (Prandtl-
Meyer Flow)

The influence of nonequilibrium is manifested in all flows
where there is a rapid change in the gas state. These flows
include steady, supersonic flow around a convex corner, and
its unsteady analog — flow in a centered rarefaction wave.

In the classical case, these solutions represent simple waves,
i.e., flows in which the propagations are propagated only in one
direction, and — in view of the self-modeling nature of these
flows — their mathematical investigation is reduced to solving

ordinary differential equations.

Simple waves cannot exist in a relaxing medium. Perturba-
tions, which are initially propagated in one direction, passing
through the vortex layers, are reflected backwards, which leads

to a more complex flow structure.
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Let us examine the general picture of flow around a blunt
corner. Let us follow (Figure 4.10) the manner in which the
flow parameters change along three streamlines. The first stream-
line is located close to the wall (Y=1<€axtx); the second — at the
distance yo2 from the wall (yz~axts»); and the third — far from the

Wall Yu3>0xTw.

Along the first streamline, the flow in the rarefaction fan
will be close to frozen, and the relaxation gzone with the charags.su
teristic dimension u't' is extended farther (the prime designates
the values on the closing characteristic of the first family drawn
from the apex of the corner), in which the flow parameters appro-
ximate their asymptotic values when x -+ «. It is apparent that
the pressure when x »+ « in the entire flow region is identical
and equals the pressure Pe in the equilibrium flow.

Along the third streamline (the length of an arc along this
streamline in the rarefaction fan 1s much greater than the
characteristic relaxation length uT), the flow parameters will

change in the same way as in equilibrium flow, i.e., in an

"equilibrium" simple Prandtl-Meyer fan.

The second streamline lies in the region of nonequilibrium
flow. The characteristics of nonequilibrium flows around a cor-
ner can be clearly seen (Figure 4.1la) when solving this problem
in the linearigzation formulation [32]. (An analog of the results
for ideal gas flows,.which are.given in Figure 4.1la, is the
linearigzed solution, in which p, p, and other parameters change
abruptly on the characteristic of the first family going from
the corner apex, and not the precise solution, in which p, p,
etc., change smoothly in the rarefaction fan.)
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Figure 4.11. Schematic nature of the change in the gas dynamic
parameters along three streamlines (solid lines — first frozen
line of perturbations; dashed-dotted line — first equilibrium
line of perturbations; dashed line — closing characteristic of
the first family).

a — according to linear theory; b — according to an exact
solutiony; Q@ — any gasdynamic parameter; 1, 2, 3 — streamlines,

Figure 4.11b shows schematically the change in the gas dyn-
amic parameters along three typical streamlines, which follow
from the precise solutions. There is a vortex layer close to
the wall at a great distance from the corner apex. Calculations

" show that the change in T, p, S, and other parameters is small

across this layer.

At the present time, there are a great many studies which
have investigated the Prandtl-Meyer flow, a centered rarefaction
fan, and other flows similar to it [38, 56 — 65]. Figures
4,12 — 4.14 show the distribution of pressure, temperature,
and the degree of dissociation a along the wall for an ideal
dissociating gas for the following initial data: M = 2,
pw/RA2pod = 0.87-10" ¢, T,/Tq = 0.06 [56]. The dimensionless /179

coordinate x = xde//RA Td is given along the abscissa axis (C
2

is the constant in the expression for the dissociation rate, and
s is assumed to equal zero, see Chapter 2), and along the
ordinate axis
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Change in degree
of dissociation a along wall.

Ap={[P—P(O))/Ra,T 40} 10°
and
AT ={[T —T (Q)}T ;) 10?

p(0) and T(0) are the initial
values at the wall.

In contrast to the relative
difference [p - p(0)1/p(0), the
absolute pressure difference
p - p(0) changes nonmonotonically
as a function of the angle 4,
since when 4 -+ 0 the difference
(p - p(0)) - 0 due to the small
influence of nonequilibrium pro-
cesses, and at the corner ¢,
which is close to the limiting
value, p and p(0) strive to zero
due to the large flow expansion. -

In several studies, analyti-
cal solutions of the problem of
flow around a blunt corner are
obtained under certain assumptions
[38, 58, 63]. Thus, V. P. Stulov
[58] for the model of an ideal
dissociating gas obtained a

solution in the region close to the corner apex without any

limitations on 9.

(The solution was found in the form of the

series o@=¢;(l+rei+r?p.+..), where is the solution for frozen
P @5

flow.)
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An approximate solution in the region between the last
characteristic of the rarefaction fan and a side of the corner
was obtained in the same way. It was shown that in a relaxing
gas the discontinuity of normal derivatives on the initial frozen
characteristic is damped very rapidly with increasing distance
from the apex (according to a law which is almost an exponential
law).

When there 1s abrupt ﬁlbw expansion, frequently it is
rapidly frozen, and in the first approximation all of the flow
may be assumed to be frozen, which is characterized by a con-
stant adiabatic index Ko In this frozen flow, the gas dynamic

parameters may differ greatly from their equilibrium values.

Typical results derived from comparing equilibrium and
frozen air flows during flow around a corner are given in
Figure 4.15 [33] (A% — flow angle of turn). It may be noted
that the nonequilibrium processes have a great influence on
the pressure and temperature just as in the case of flow in a

AN q

0 S \
0.01 \‘\ n "t\\

nozzle.

74

\ \
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Figure 4.15. Comparison of parameters of equilibrium and frozen
flows of air passing around a corner at My, = 1; Tl = 6140 K;
p; = 1.2 kG/cm?.
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4.6. Flow around blunt bodies

Typical characteristics

Nonequilibrium flow around blunt bodies has been studied in
great detail both with the example of the simplest models of
nonequilibrium media [67 — 69], and for gas mixtures with com-
plex kinetics (air and others) [70 — 107]. The following
typical characteristics of nonequilibrium flow around blunt

bodies may be noted.

1. The great influence of nonequilibrium processes on /181

temperature, density, concentration of components in the shock
layer, and also on the shock wave stand-off distance from the

body surface.

2. Nonequilibrium processes have a different influence
on the pressure in different regions of the flow field: slight
— close to the front body surface, and strong — in regions of

considerable flow expansion.¥

3. A large change in the state of the flow in the shock
lJayer — from almost equilibrium flow to almost frozen flow.
by, Differing types of relaxation layers — regions with

large gradients of gas dynamic parameters.

Let us discuss these characteristics in greater detail.
For example, let us determine the influence of nonequilibrium

processes on the pressure in the shock layer at the front

¥We have in mind here bodies with a great change in the
surface angles of inclination.
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surface of a body. When M » 1, the pressure behind the shock
wave Dy and at the critical point po' will be determined by the

following relationships:
In the flow of an ideal gas (index "f")

' € Poo r—1
Py PV n(1—ep) po,zpmvi,( —7’); =22~  (4.42a)

In equilibrium flow (index "e")

PPV (1—2); poe= pmV'i( — °—;) ;
(4.42b)

Peo~ hl_el .
Ple hi+e '

3¢=

In nonequilibrium flow

P paV o (1)) p«.v':’o(l— ‘—2’)<pa<pmvi(1—‘~;)£ (4.42c)

Thus, it may be assumed that the pressure in the shock
layer in front of the body depends slightly on the state of the

flow and

P=PV2 (4.43)

(for more details see [120, 1211]).

The picture will be different for temperature and density.
In nonequilibrium flow, the temperature along the critical stream-
line changes from T1f at the shock wave to To' = Te(H, po') at

the critical point, where H = h_ + Vm2/2 is the braking enthalpy.
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For Tlf’ we have /182

By Vi(l—E'-’) »—1 % —1
—_—= Mo ; E= s k=
oo R %+ 1 Yo

Tv=

We may determine TO' by using the tables of thermodynamic

functions or the graphs of T = T(p, h) (for air, see Figure 2.2).

Similar calculations may be made for the density change £

across a nonequilibrium shock layer

x+1, ' P(') T, 4.4
-_— ~ oo ; J— h Or —— , -
Pl PV = P z—1 Po= pO“OGIRTO 1 TOGZO ( 5)
where Z0 = Mw/M(TOe" po'). Figure 2.1 gives graphs showing the

dependence of Z on T and p for air. Using the graphs of 2.1 and
2.2, we find, for example, that for flight in the atmosphere of
the Earth at a velocity of V 7 km/sec at an altitude of 70 km
(thus H » V2/2 = 24.5 km/sec? = 5850 cal/g; p'y = p, Vs = 0.024

kG/cm?) temperature in the shock layer changes by approximately
a factor of four from the shock wave to the critical point, and
the density changes by a factor of 2.2

(T1=2,4-10'K; T0,=5,9-1°K; Z(Tte, po)=1.9).

We should note that nonequilibrium processes have a very
slight influence on the temperature at the critical point [120,

121]. Thus, for air‘To' differs from Tye' only by several tenths

of a percent.
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The change in T and p in the

7 shock layer depends basically on

T

Too 005
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N
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\\\ \\\\ \\\\\\\ tions, respectively).
N—_

the dimensionless relaxation time
T (4.13). PFigure 4.16 shows

, 2025
‘\\\\\\\\ \\\\ typical results derived from
\\\\ ‘\\&fi \ calculating the temperature along

the critical streamline from a

N shock wave to a body, obtained by
\\\ . "truncation" of series [97] (the -

\\\ 15 \ dashed and so0lld curves pertain
\\; to the first and second trunca-
24
29
22 ~
Throughout the entire shock
20 Ry=10cM layer from the front portion to
1 08 0.5 0.4 0.2 3

the lateral portion, the value of

Figure 4.16. Temperature T changes very greatly, by sever-

change along critical

streamline for air when al orders of magnitude — a
M, = 14; p = 0.0117 kG/cm?; similar situation occurs in hyper-
T = 230 K.

o sonic nozzles.*¥ For example, if

the characteristic relaxation length d = 0.1A behind the shock
wave on the axlis of symmetry, then the flow at the front surface
of the body will be close to equilibrium flow. However, in the
adjacent region of the shock layer, where the temperature and
pressure behind the oblique shock wave are approximately 1.5 — 2
times less than the temperature and pressure behind a normal
shock wave, the relaxation timemincgeasegvggprpximately by an
order of magnitude, and the characteristic velocié& increases

by approximately a factor of 1/e, i.e., the value of T increases /183
approximately by two orders of magnitude. With further expansion

¥Here and below we have in mind bodies with a great change
in the surface angles of inclination, for example, a blunt
cylinder, a blunt cone with a small angle of opening, etc.
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of the gas, T will continue to increase, and conditions may occur

under which the flow becomes frozen.

Therefore, in order to classify the flows in a shock layer
it is advantageous to use two characteristic values of the

parameter T

where T, is the characteristic relaxation time behind a normal
shock wave, and tcl = Rb/VOo is the characteristic time of a gas

particle motion in the region of the shock layer before the

5 = T2/tc2 ,» Where T, is the characteristic relaxation

time in the region of the front body surface, and tc2 = L/V_

body and T

(L is the length of the body) is the characteristic time of gas
motion along the body.

Using the parameters ?1 and ?2, we may determine the

following basic types of flows in a shock layer around blunt

bodies:

Lo, ngl — practically equilibrium flow /184
(nonequilibrium processes are
significant only in a very narrow
relaxation layer behind the shock

wave);

RARTNG NI — flow with a developable nonequili-

brium region;

240



3.1 KL myl — frozen flow (after an equilibrium
state is reached behind the

shock wave);

4. 1~1, 6> 1 — frozen flow (an equilibrium state

is not reached);

51,51 61 — practically frozen flow with a
; narrow near-equilibrium region
close to the critical point and
a region of large gradients of
T and p in the relaxation entropy
layer close to the body surface;
see [66];

6., >1, <1 — flow which is frozen in the region
of the nose, later changing to
equilibrium flow — this may be
realized for bodies such as
slender needles; the case is of
little interest for present day

problems of aerodynamics.

Regime 5 is typical for flights of bodies at high altitudes,
where the influence of viscosity must be taken into account. In
actuality, in these regimes a relaxation entropy layer will occur

within the viscous layer.

Regimes 3 and 4 are of the greatest practical interest

(when nonequilibrium is significant). These regimes are typical
for flights of hypersonic aircraft at velocities of 4 — 8 km
per second at altitudes of 40 — 70 km. In these cases, the

state of the flow changes from almost equilibrium flow in the
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forward portion of the shock layer to almost frozen flow close to

the lateral surface.

In the region of frozen flow, the temperature and pressure
may differ greatly from the temperature and pressure in equili-
brium flow. The studies [85, 86] (see below, Figure 4;26) give
typical results derived from calculating the pressure distribution
along the lateral surface of blunt bodies. In regimes 3 and 4,
nonequilibrium processes may have a great influence on certain
aerodynamic characteristics, such as m, and cy [88], and on the

position of the forward shock wave (regime 4y, The main reason
for this is the increase in the adiabatic index: Kf > Ky > Ko+

The stand-off distance of the shock wave A iIn flows of an
ideal and equilibrium gas when M > 1 is determined primarily by

the magnitude of compression in the normal shock wave (A ~ pw/pl).

In nonequilibrium flow when ;l ~ 1, the density across the

shock layer is variable, and A will depend on the effective /185

compression e_p Y, where

Po" . = . W * e <
eef = pef > pef = SP([.., Prs pef < P (4-46)
0

The value of A may be determined by using the formula
given by V. P. Stulov [89]

€
L - A (4.47)

RI 1 _l —g_ 0

¥ £ is a dimensionless coordinate along the critical streamline.
On the axis of symmetry & = 0; on the shock wave & = 1.
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(The formula was obtained when processing the results of numeri-
cal calculations for bodies of various forms: spheres, ellip-
soids, bodies of segmental form with rounding, ete., R1 —

radius of curvature of shock wave on the axis of symmetry;

€g = pw/po', po' — density at the critical point.) In the
particular case of sphere when 0.04 < g < 0.2 we may use the
formula [89]

Ry 082 (4.48)
(See also [81, 108, 109] regarding the calculation of A.)

In some of the simplest cases, we obtain the explicit
dependence of the influence of the parameter T on the shock wave
stand-off distance. For the model of a gas with nonequilibrium
excitation of vibrational degrees of freedom, Blythe obtained the
following formula [69, 3]

(4.49)

(the concept of a thin shock layer was used; T was assumed to
be constant). A graph of this function is shown in Figure 4.17.

power function Ei(x).
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44, e T B Methods of calculating
Ang

T nonequilibrium flows

¥ — b around blunt bodies

010' we w1 0" w7t

In studying nonequilibrium

gas flow around blunt bodies, we

Figure 4.17. Dependence of found different methods developed

shock wave Stand-off distance for flows of an ideal gas, for

on the parameter T
(axisymmetric flow). e